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Self Learning Material is a mixture of Four Block.  

First block is KINEMATICS OF FLUIDS IN MOTION, in this 

block Real fluids and Ideal fluids, Newton’s law of viscosity, Newtonian 

and non-Newtonian fluid, Types of non-Newtonian fluids, hypothesis of 

continuum, Velocity of a Fluid at a point defined clearly. 

 Second block is EQUATIONS OF MOTION OF A FLUID, in this 

block Pressure at a Point in a Fluid at Rest or in a Motion, Euler’s Equation 

of motion defined clearly.  

 Third block is TWO-DIMENSIONAL FLOW, in this block The 

Stream Function, Two-Dimensional Image System are defined. 

Fourth block SOURCES, SINKS AND DOUBLETS AND 

STOKES FUNCTION, in this block concept Relations between Cartesian 

Components, Stokes function defined.  

Adequate number of illustrative examples and exercises have also been 

included to enable the leaners to grasp the subject easily. 
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1.1 INTRODUCTION 

A fluid is a substance that continuously deforms under an applied 

shear stress, regardless of the magnitude of the stress. Unlike solids, which 

resist deformation and maintain a fixed shape, fluids encompass both 

liquids and gases. They are characterized by their ability to flow and 

conform to the shape of their containers. The molecules within a fluid are 

free to move past one another, allowing for this fluidity and the transmission 

of pressure in all directions. This unique property of fluids makes them 

essential in numerous natural and engineered systems, from the flow of 

water in rivers to the circulation of air in the atmosphere and the operation 

of hydraulic machines. Understanding the behavior of fluids is crucial for a 

wide range of applications, including engineering, meteorology, medicine, 

and environmental science. 

Mechanics is the oldest physical science, focusing on the behavior 

of both stationary and moving bodies under the influence of forces. The 

branch of mechanics that addresses bodies at rest is known as statics, while 

the branch that examines bodies in motion is called dynamics. Fluid 

mechanics, a subcategory of mechanics, studies the behavior of fluids at rest 

(fluid statics) or in motion (fluid dynamics) and the interaction of fluids with 

solids or other fluids at their boundaries. Fluid mechanics is often referred 

to as fluid dynamics, considering fluids at rest as a special case of motion 

with zero velocity. 

 

1.2 OBJECTIVES 

 After completion of this unit learners will be able to: 

(i) Define the concept of fluid. 

(ii) Describe the Newton’s law of viscosity. 

(iii) Differentiate between Newtonian and non-Newtonian fluid. 
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(iv) Explain different types of non-Newtonian fluid. 

(v) Explain the continuum hypothesis. 

 

1.3 REAL FLUID AND IDEAL FLUIDS 

 

1.3.1 VISCOSITY OF FLUIDS 

Viscosity is a measure of a fluid’s resistance to deformation and 

flow. It quantifies the internal friction between layers of a fluid as they move 

relative to each other. A fluid with high viscosity, such as honey, flows 

slowly and resists motion, while a fluid with low viscosity, like water, flows 

easily and quickly. Viscosity plays a critical role in fluid dynamics, 

affecting how fluids move through pipes, around objects, and within various 

natural and industrial processes. It is influenced by factors such as 

temperature and pressure; for instance, most fluids become less viscous at 

higher temperatures. 

The viscosity of a liquid decreases significantly with increasing 

temperature, while the viscosity of a gas increases as the temperature rises. 

Although viscosity also depends on pressure, this effect is generally minor 

compared to the influence of temperature in most fluid dynamics problems. 

 

1.3.2 DEFINITON OF REAL AND IDEAL FLUIDS 

 Real Fluids: Real fluids are those that exhibit viscosity, meaning 

they resist motion due to internal friction between their layers. This 

viscosity causes energy loss when the fluid flows, leading to phenomena 

such as drag and turbulence. Examples of real fluids include water, oil, air, 

and honey. These fluids display characteristics such as shear stress, heat 

conduction, and compressibility, making them more complex to analyze in 

practical applications. 
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Ideal Fluids: Ideal fluids are hypothetical fluids that are assumed to 

have no viscosity and are incompressible. They provide a simplified model 

for fluid dynamics problems, allowing easier analysis and mathematical 

modeling. Ideal fluids do not resist shear stress, leading to the assumption 

of no energy loss during flow. While no real fluid perfectly fits this 

description, the concept of an ideal fluid is useful for understanding 

fundamental principles and approximations. 

 

1.4 NEWTONIAN AND NON-NEWTONIAN   

                             FLUID 

 

1.4.1 NEWTON’S LAW OF VISCOSITY 

 Newton's law of viscosity describes the relationship between the 

shear stress and the velocity gradient in a fluid. Newton's law of viscosity 

states that the shear stress (τ) between adjacent fluid layers is directly 

proportional to the rate of change of velocity (
𝑑𝑢

𝑑𝑦
) with respect to the 

distance perpendicular to the direction of flow.  

 

Mathematically, it can be expressed as, 𝜏 = µ (
𝑑𝑢

𝑑𝑦
), where µ is a constant of 

proportionality which is called the coefficient of viscosity or coefficient of 

dynamic viscosity of the fluid. The components in the Newton's law of 

viscosity are defined as: 

(i) Shear Stress (τ): This is the force per unit area exerted by the fluid layers 

upon each other. It acts tangentially to the surface. 

(ii) Velocity Gradient(
𝑑𝑢

𝑑𝑦
): This represents the rate at which the fluid 

velocity changes with respect to the distance in the direction perpendicular 
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to the flow. A higher velocity gradient indicates a steeper change in velocity 

between layers. 

(iii) Dynamic Viscosity (µ): This is a measure of the fluid’s resistance to 

deformation or flow. It is a property of the fluid that indicates how “thick” 

or “thin” the fluid is. Higher viscosity means the fluid is thicker and resists 

flow more. 

 

 

1.4.2 DEFINITION OF NEWTONIAN AND NON-

NEWTONIAN FLUID 

 Newtonian fluid: Fluids that follow Newton’s law of viscosity, 

where the shear stress is directly proportional to the velocity gradient, are 

called Newtonian fluids. Common examples include water, air, and most 

common oils. 

Non-Newtonian fluid: Fluids that do not follow Newton’s law of 

viscosity are termed non-Newtonian fluids. In these fluids, the relationship 

between shear stress and the velocity gradient is nonlinear and can depend 

on the shear rate, time, or other factors. Examples include ketchup, 

toothpaste, and blood. 

 

1.4.3 TYPES OF NON-NEWTONIAN FLUIDS 

 Non-Newtonian fluids exhibit a variety of behaviors that deviate 

from the linear relationship between shear stress and shear rate observed in 

Newtonian fluids. Figures 1.1 and 1.2 show that these fluids can be 

classified into several types based on how their viscosity changes with shear 

rate, time, or stress. A detailed explanation of the types of non-Newtonian 

fluids is as follows: 

 

(i) Dilatant fluid: This is a shear-thickening fluid, applying a higher shear 

rate increases the internal resistance, making the fluid more viscous. This 
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behavior is often observed in suspensions where particles crowd together 

under shear. Examples include mixtures of corn starch or sand in water. A 

well-known example is quicksand, which solidifies when disturbed. 

 

(ii) Pseudoplastic fluid: This is a shear-thinning fluids, applying a higher 

shear rate reduces the internal resistance, making the fluid flow more easily. 

This behavior is common in many polymer solutions and biological fluids. 

Examples include polymer solutions, colloidal suspensions, paper pulp in 

water, latex paint, blood plasma, and syrup. A classic example is paint, 

which is thick when poured but becomes thin when brushed with high strain 

rates. 

 

(iii) Bingham plastic fluid: Bingham plastics do not flow until the applied 

shear stress exceeds a specific yield value. Once this threshold is surpassed, 

they flow like a viscous fluid. This fluid requires a certain yield stress to 

start flowing; behaves like a solid until this stress is exceeded. Examples 

include suspensions of clay, drilling mud, toothpaste, mayonnaise, 

chocolate, and mustard. A classic example is ketchup, which remains in the 

bottle until agitated or shaken. 

 

(iv) Rheopectic fluid: Rheopectic fluids become more viscous over time 

when subjected to continuous shear stress. These fluids require a gradually 

increasing shear stress to maintain a constant strain rate. Examples include 

lubricants, and printer inks. 
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(v) Thixotropic fluid: Thixotropic fluids become less viscous over time 

when subjected to continuous shear stress. This behavior is reversible when 

the shear stress is removed. These fluids requires decreasing stress to 

maintain a constant strain rate. Examples include yogurt, gels, and clays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 Effect of time on applied stress 

Ref: Frank M. White (2011), Fluid 

Mechanics, McGraw Hill. 

 

 

 

 

Fig 1.2 Stress versus strain rate 

Ref: Frank M. White (2011), Fluid 

Mechanics, McGraw Hill. 

 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
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1.5 HYPOTHESIS OF CONTINUUM 

It is widely understood that matter consists of molecules or atoms in 

constant random motion. In fluid dynamics, analyzing individual molecules 

isn’t practical or necessary for mathematical purposes. Instead, we focus on 

the macroscopic behavior of fluids, considering them as continuously 

distributed in space. This assumption is termed the continuum hypothesis. 

Within this continuum concept, we can indefinitely subdivide a fluid 

element. Additionally, we define a fluid particle as the fluid contained 

within an infinitesimally small volume. 

The continuum hypothesis is justified by the large number of 

molecules present in macroscopic volumes of fluids. For example, even in 

a tiny volume of air, there are trillions of molecules interacting with each 

other. This vast number of molecules allows for the statistical averaging of 

properties, leading to well-defined macroscopic properties. This hypothesis 

is applied extensively in fluid mechanics to simplify the governing 

equations of fluid flow. The Navier-Stokes equations, which describe the 

motion of fluids, are formulated based on the continuum assumption. These 

equations treat fluid properties as continuous fields and are widely used in 

engineering and scientific simulations to predict fluid behavior in various 

contexts, from aerodynamics and hydrodynamics to chemical engineering 

processes. 
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1.6 VELOCITY OF FLUID AT A POINT 

 

1.6.1 VELOCITY OF FLUID PARTICLE 

 Let the fluid particle be at 𝑃 at any time 𝑡 and let it be at 𝑄 at time 

𝑡 + 𝛿𝑡 such that 

𝑂𝑃⃗⃗⃗⃗  ⃗ = 𝐫  and 𝑂𝑄⃗⃗⃗⃗⃗⃗ = 𝐫 + 𝛿𝐫 

Then in the interval 𝛿𝑡 the movement of the particle is 𝑃𝑄⃗⃗⃗⃗  ⃗ = 𝛿𝐫 and hence 

the velocity of the fluid particle 𝐪 at 𝑃 is given by 

𝐪 = lim
𝛿𝑡→0

 (𝛿𝐫/𝛿𝑡) = 𝑑𝐫/𝑑𝑡, 

assuming such a limit to exist uniquely. Taking the fluid as continuous, the 

above assumption is justified. Clearly 𝐪 is a function of 𝐫 and 𝑡 and hence 

it can be expressed as 𝐪 = 𝑓(𝐫, 𝑡). If 𝑢, 𝑣,𝑤 are the components of 𝐪 along 

the axes, we have 

𝐪 = 𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤 

 

1.6.2 ACCELERATION OF FLUID PARTICLE 

 Suppose a fluid particle moves from 𝑃(𝑥, 𝑦, 𝑧) at time 𝑡 to 𝑄(𝑥 +

𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧) at time 𝑡 + 𝛿𝑡. Let 

𝐪 = (𝑢, 𝑣,𝑤) = 𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤 (1.1) 

be the velocity of the fluid particle at 𝑃 and let 𝒒 + 𝛿𝒒 be the velocity of 

the same fluid particle at 𝑄. Then, we have 

𝛿𝒒 =
∂𝒒

∂𝑥
𝛿𝒙 +

∂𝒒

∂𝑦
𝛿𝑦 +

∂𝒒

∂𝑧
𝛿𝑧 +

∂𝒒

∂𝑡
𝛿𝑡  or  

𝛿𝒒

𝛿𝑡

=
∂𝒒

∂𝑥

𝛿𝒙

𝛿𝑡
+

∂𝒒

∂𝑦

𝛿𝑦

𝛿𝑡
+

∂𝒒

∂𝑧

𝛿𝑧

𝛿𝑡
+

∂𝒒

∂𝑡
 

 

(1.2) 

Let 
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lim
𝛿𝑡→0

 
𝛿𝐪

𝛿𝑡
=

𝐷𝐪

𝐷𝑡
 or 

𝑑𝐪

𝑑𝑡
,

 lim
𝛿𝑡→0

 
𝛿𝑦

𝛿𝑡
=

𝑑𝑦

𝑑𝑡
= 𝑣

and  
lim
𝛿𝑡→0

 
𝛿𝑥

𝛿𝑡
=

𝑑𝑥

𝑑𝑡
= 𝑢

lim
𝛿𝑡→0

 
𝛿𝑧

𝛿𝑡
=

𝑑𝑧

𝑑𝑡
= 𝑤

} 

(1.3) 

Making 𝛿𝑡 → 0 and using (1.3), (1.2) reduces to 

𝒂 =
𝐷𝐪

𝐷𝑡
= 𝑢

∂𝐪

∂𝑥
+ 𝑣

∂𝐪

∂𝑦
+ 𝑤

∂𝐪

∂𝑧
+

∂𝐪

∂𝑡
 

(1.4) 

Let 

∇= (∂/ ∂𝑥)𝐢 + (∂/ ∂𝑦)𝐣 + (∂/ ∂𝑧)𝐤 (1.5) 

From (1.1) and (1.5), 

𝐪 ⋅ ∇= 𝑢(∂/ ∂𝑥) + 𝑣(∂/ ∂𝑦) + 𝑤(∂/ ∂𝑧)  (1.6) 

Using (1.6), (1.4) may be re-written as 

𝒂 =
𝐷𝐪

𝐷𝑡
= (𝐪 ⋅ ∇)𝐪 +

∂𝐪

∂𝑡
, 

(1.7) 

which shows that the acceleration 𝑎 of a fluid particle of fixed identity can 

be expressed as the material derivative of the velocity vector 𝐪. 

Hence, the components of acceleration in Cartesian coordinates (𝑥, 𝑦, 𝑧) 

can be written as 𝒂 = 𝑎𝑥𝐢 + 𝑎𝑦𝐣 + 𝑎𝑧𝐤. Then (1.4) yields: 

𝑎𝑥𝐢 + 𝑎𝑦𝐣 + 𝑎𝑧 = 𝑢
∂

∂𝑥
(𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤) + 𝑣

∂

∂𝑦
(𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤) 

+ 𝑤
∂

∂𝑧
(𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤) +

∂

∂𝚤
(𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤) 

 𝑎𝑥 =
𝐷𝑢

𝐷𝑡
= 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ 𝑤

∂𝑢

∂𝑧
+

∂𝑢

∂𝑡
, 

𝑎𝑦 =
𝐷𝑣

𝐷𝑡
= 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
+ 𝑤

∂𝑣

∂𝑧
+

∂𝑣

∂𝑡
, 

𝑎𝑧 =
𝐷𝑤

𝐷𝑡
= 𝑢

∂𝑤

∂𝑥
+ 𝑣

∂𝑤

∂𝑦
+ 𝑤

∂𝑤

∂𝑧
+

∂𝑤

∂𝑡
.
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1.6.3 EXAMPLES BASED ON VELOCITY AND 

ACCELERATION 

Example 1. If the velocity distribution is 𝐪 = 𝐢𝐴𝑥2𝑦 + 𝐣𝐵𝑦2𝑧𝑡 + 𝐤𝐶𝑧𝑡2, 

where 𝐴,𝐵, 𝐶, are 

constants, then find the acceleration and velocity components. 

Solution. The acceleration 𝒂 = 𝑎𝑥𝐢 + 𝑎𝑦𝐣 + 𝑎𝑧𝐤 is given by 

𝒂 =
∂𝐪

∂𝑡
+ 𝑢

∂𝐪

∂𝑥
+ 𝑣

∂𝐪

∂𝑦
+ 𝑤

∂𝐪

∂𝑧
 

Also 

𝐪 = 𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤 = 𝐢𝐴𝑥2𝑦 + 𝐣𝐵𝑦2𝑧𝑡 + 𝐤𝐶𝑧𝑡2 

Hence, 

𝑢 = 𝐴𝑥2𝑦,  𝑣 = 𝐵𝑦2𝑧𝑡,  𝑤 = 𝐶𝑧𝑡2 

Hence, the expression for acceleration becomes: 

𝒂  = 𝐵𝑦2𝑧𝐣 + 2𝐶𝑧𝑡𝐤 + 𝐴𝑥2𝑦 × (2 A𝑥𝑦𝐢) + 𝐵𝑦2𝑧𝑡(𝐴𝑥2𝐢 + 2𝐵𝑦𝑧𝑡𝐣) + 𝐶𝑧𝑡2(𝐵𝑦2𝑡𝐣 + 𝐶𝑡2𝐤)

= 𝐴(2𝐴𝑥3𝑦2 + 𝐵𝑥2𝑦2𝑧𝑡)𝐢 + 𝐵(𝑦2𝑧 + 2𝐵𝑦3𝑧2𝑡2 + 𝐶𝑦2𝑧𝑡3)𝐣 + 𝐶(2𝑧𝑡 + 𝐶𝑧𝑡4)𝐤
 

The components of the acceleration (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) are given by 

𝑎𝑥 = 𝐴(2𝐴𝑥3𝑦2 + 𝐵𝑥2𝑦2𝑧𝑡),  𝑎𝑦 = 𝐵(𝑦2𝑧 + 2𝐵𝑦3𝑧2𝑡2 + 𝐶𝑦2𝑧𝑡3),  𝑎𝑧

= 𝐶(2𝑧𝑡 + 𝐶𝑧𝑡4) 

Example 2. Determine the acceleration at the point (2,1,3) at 𝑡 = 0.5sec, 

if 𝑢 = 𝑦𝑧 + 𝑡, 𝑣 = 𝑥𝑧 − 𝑡 and 𝑤 = 𝑥𝑦. 

Solution. Velocity field 𝐪 at the point (𝑥, 𝑦, 𝑧) is given by 

𝐪 = 𝒖𝐢 + 𝑣𝐣 + 𝑤𝐤 = (𝑦𝑧 + 𝑡)𝐢 + (𝑥𝑧 − 𝑡)𝐣 + 𝑥𝑦𝐤. 

The acceleration 𝒂 = 𝑎𝑥𝐢 + 𝑎𝑦𝐣 + 𝑎𝑧𝐤 is given by 

𝒂  = ∂𝒒/ ∂𝑡 + 𝑢(∂𝒒/ ∂𝑡) + 𝑣(∂𝒒/ ∂𝑡) + 𝑤(∂𝒒/ ∂𝑡)

 = (𝐢 − 𝐣) + (𝑦𝑧 + 𝑡)(𝑧𝐣 + 𝑦𝐤) + (𝑥𝑧 − 𝑡)(𝑧𝐢 + 𝑥𝐤) + 𝑥𝑦(𝑦𝐢 + 𝑥𝐣)

 = (1 + 𝑥𝑧2 + 𝑥𝑦2 − 𝑡𝑧)𝐢 + (−1 + 𝑦𝑧2 + 𝑥2𝑧 + 𝑧𝑡)𝐣 + (𝑦2𝑧 + 𝑥2𝑧 + 𝑦𝑡 − 𝑥𝑡)𝐤

 

Acceleration at (2,1,3) at 𝑡 = 0.5 is given by  𝒂 = 19.5𝐢 + 13.5𝐣 + 6.5𝐤 

Hence the components 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 of acceleration are given by 

𝑎𝑥 = 19.5,  𝑎𝑦 = 13.5  and  𝑎𝑧 = 6.5 
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1.7 SUMMARY 

 This unit explains the following topics: 

(i) Definition of Fluid. 

(ii) Real and Ideal Fluids. 

(iii) Definition of Newtonian and non-Newtonian fluids based on 

Newton’s law of viscosity. 

(iv) Different types of non-Newtonian fluids. 

(v) Continuum hypothesis. 

(vi) Velocity and acceleration of fluid particle. 

 

1.8 GLOSSARY 

 

(i) Fluid 

(ii) Viscosity 

(iii) Newton’s law of viscosity 

(iv) Newtonian and non-Newtonian fluids 

(v) Shear stress 

 

1.9 REFERENCES AND SUGGESTED 

READINGS 

(i)        M. D. Raisinghanai (2013), Fluid Dynamics, S. Chand & Company 

Pvt. Ltd. 

(ii) Frank M. White (2011), Fluid Mechanics, McGraw Hill. 

(iii) John Cimbala and Yunus A Çengel (2019), Fluid Mechanics: 

Fundamentals and Applications, McGraw Hill. 

(iv)      P.K. Kundu, I.M. Cohen & D.R. Dowling (2015), Fluid Mechanics,  

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
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           Academic Press; 6th edition. 

(v)       F.M. White & H. Xue (2022), Fluid Mechanics, McGraw Hill;  

            Standard Edition. 

(vi)      S.K. Som, G. Biswas, S. Chakraborty (2017), Introduction to Fluid  

            Mechanics and Fluid Machines, McGraw Hill Education;  

            3rd edition. 

 

 

1.10 TERMINAL QUESTIONS 

 1. What is a fluid? 

 2.  What is Newton’s law of viscosity? 

 3. Define Newtonian and non-Newtonian fluids. 

 4. What is Continuum hypothesis for fluid? 

 5. Explain different types of non-Newtonian fluids? 

 6. Determine the acceleration of a fluid particle from the 

following flow field: 

  𝐪 = 𝐢𝐴𝑥2𝑦𝑡 + 𝐣𝐵𝑥2𝑦𝑡 + 𝐤𝐶𝑥𝑦𝑧. 

Solution: 𝑎𝑥 = 𝐴(x𝑦2 + 𝐴x𝑦4𝑡 + 2𝐵𝑥3𝑦2𝑡2),  𝑎𝑦 = 𝐵(𝑥2𝑦 + 2A𝑥2𝑦3t +

𝐵𝑥4𝑦𝑡2),  𝑎𝑧 = 𝐶(Ax𝑦3𝑧 + B𝑥3yzt + 𝑧𝑥2𝑦2) 
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UNIT 2:  STREAM LINES 

 

CONTENTS: 

2.1    Introduction 

2.2    Objectives 

2.3    Stream lines  

2.4    Stream tubes 

2.5    Path line 

2.6    Different types of flows 

     2.6.1    Uniform flow 

     2.6.1    non-uniform flow 

     2.6.1    Steady flow 

     2.6.4    Unsteady flow 

2.7    Velocity potential  

2.8    Vorticity vector 

2.9    Solved examples  

2.10    Summary 

2.11    Glossary 

2.12    References 

2.13    Terminal questions 

2.14    Answers 
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 2.1 INTRODUCTION 

 

Fluid mechanics is branch of mathematical science which deals 

with study of fluids, in both stages, in motion or at rest. Fluids are 

classified in forms of liquids and gases. The liquids have relatively 

close molecules with cohesive attraction. Generally, liquids are having 

constant volume and free surface in a gravitational field. While, the 

gases have wide spaced molecules with very less cohesive attraction. 

The volume of gas is not definite and also not disturbed by 

gravitational effects. 

The fluid mechanics is significantly applicable in engineering, 

sciences and human activities as 75% part of earth is occupied by 

water and 100% by air. The applications include medical studies blood 

flow, aerodynamics, hydrodynamics oceanography, hydrology and 

energy generation etc.  

The practical applications of fluid flow, not scientifically 

acknowledged, were shown in ancient civilizations like water supply, 

drainage, irrigation systems, design of boats and arrows etc. Later on 

around 246 BC, Archimedes stated that the body immersed in a fluid is 

buoyed up by a force equal to the weight of the fluid, which is 

displaced by body. It is often known as Archimedes’ principle. In 

Fifteenth century, Leonardo Da Vinci observed movements of water 

like hydraulic jumps, eddy formation and analyzed complex motions in 

terms of linear and circular components. Due to lack of mathematical 

tools, these observations were prevented from set of generally 

applicable laws, which were formulated by Navier and Stokes in 

nineteenth century.  
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This unit deals with stream lines, path lines, steady and unsteady flows, 

velocity potential and vorticity vectors. We also discuss a number of 

examples and ways to evaluate these physical quantities. 

 

2.2 OBJECTIVES 

 

After completion of this unit learners will be able to 

i. Define the concept stream lines, path lines, velocity 

potential and vorticity vectors. 

ii. Describe the difference and relation between stream lines 

and path lines. 

iii. Explain the steady and unsteady flows. 

iv. Understand the uniform and non-uniform flows. 

 

2.3 STREAM LINES 

 

The stream line is defined as flow line or curve traced in fluid such that 

the tangent at its any point indicates the direction of motion or fluid 

velocity at that point.  

 

 

 

 

 

 

 

 

Figure 2 
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The stream line can also be defined as a line which is parallel to 

velocity vector at every point. Let 𝑠 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ be the positon 

vector at any point A along the streamline and let 𝑣⃗ = 𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂ 

be the velocity vector at same point A. Then, 𝑣⃗ and 𝑑𝑠⃗⃗⃗⃗⃗ are parallel at 

point A. Thus, we have 

𝑣⃗ × 𝑑𝑠⃗⃗⃗⃗⃗ = 0 

Then,            (𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂) × (𝑑𝑥𝑖̂ + 𝑑𝑦𝑗̂ + 𝑑𝑧𝑘̂ ) = 0 

       (𝑣2𝑑𝑧 − 𝑣3𝑑𝑦)𝑖̂ + (𝑣3𝑑𝑥 − 𝑣1𝑑𝑧)𝑗̂ + (𝑣1𝑑𝑦 − 𝑣2𝑑𝑥)𝑘̂ = 0 

Equating the components of both sides, it provides three differential 

equations 

𝑣2𝑑𝑧 − 𝑣3𝑑𝑦 = 0,           𝑣3𝑑𝑥 − 𝑣1𝑑𝑧 = 0,          𝑣1𝑑𝑦 − 𝑣2𝑑𝑥 = 0 

On solving above equations, one gets the equation of streamline 

𝑑𝑥

𝑣1
=

𝑑𝑦

𝑣2
=

𝑑𝑧

𝑣3
                                                                                    …(1) 

The integration of equation (1) gives family of curves. To fix the 

integrating constants, it is required to define some points from where 

the stream line passes.  

For two dimensional spaces, it has 𝑑𝑧 = 0 and 𝑣3 = 0. Therefore, the 

equation of stream line is 

𝑑𝑥

𝑣1
=

𝑑𝑦

𝑣2
                                                                                             …(2)          

This is an ordinary differential equation. Also, the integration of 

equation (2) gives family of curves. To fix the integrating constants, it 

is required to define some points from where the stream line passes.  

Remarks: 1. There exists unique stream line at a point if all 𝑣1, 𝑣2 

and 𝑣3 not equal to zero.  
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2. If the velocity vectors are zero at a point then singularities exist and 

the point is called critical point.  

 

2.4 STREAM TUBES 

 

If (𝑥0, 𝑦0, 𝑧0) is any set of points in closed curve in fluid then stream 

lines which passes through all these points of closed curve form a 

surface of tubes, called stream tubes. As there is no fluid flow across 

the surface, therefore end point of stream tube transfers the equal mass 

flow and stream tube is treated like channel via fluid is flowing.  

2.5 PATH LINE 

 

The curve or path or trajectory along which an individual fluid particle 

travels during its motion, is called path line. The direction of path is 

obtained by streamlines at each point over a certain period.  

Let 𝑠 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ be the positon vector at any point A and let 𝑣⃗ =

𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂ be the velocity vector at same point A. Then, the path 

line are defined by differential equation 

𝑑

𝑑𝑡
(𝑠) = 𝑣⃗   i.e. 

𝑑𝑥

𝑑𝑡
= 𝑣1 ,      

𝑑𝑦

𝑑𝑡
= 𝑣2      and       

𝑑𝑧

𝑑𝑡
= 𝑣3.  

Note: If at a fixed time 𝑡 = 𝑡0, the position of fluid particle is (𝑥0, 𝑦0, 

𝑧0) then path line can be derived from following equations 

𝑑𝑥

𝑑𝑡
= 𝑣1,      

𝑑𝑦

𝑑𝑡
= 𝑣2      and       

𝑑𝑧

𝑑𝑡
= 𝑣3 

with initial condition 

𝑥(𝑡0) = 𝑥0,       𝑦(𝑡0) = 𝑦0      and     𝑧(𝑡0) = 𝑡0.  
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 Differences between streamlines and path lines 

1. Streamline represents the direction of each fluid particle at given 

instant of time while path line represents the path of individual fluid 

particle at each instant and may be different for each particle. 

2. Streamline shows fluid flow at a given instant and can be used to 

visualize the overall flow pattern. However, path line gives the entire 

history of movement for individual fluid particle. 

 Relation between stream lines and path lines 

For the steady motion, stream lines and path lines are identical. 

CHECK YOUR PROGRESS 

 

 

 

 

 

 

 

 

2.6 DIFFERENT TYPES OF FLOWS 

 

2.6.1 UNIFORM FLOW 

If all the fluid particles in a fluid flow moves with same velocity at 

each point of cross section then flow is called uniform flow. In uniform 

flow, the velocity is function of time only.  

The equation of streamline follows 

(a) 𝑣⃗ × 𝑑𝑠⃗⃗⃗⃗⃗ = 0 

(b) 𝑣⃗ ∙ 𝑑𝑠⃗⃗⃗⃗⃗ = 0 

(c) 𝑑𝑠⃗⃗⃗⃗⃗ ∙ 𝑣⃗ = 0 

(d) None of these 

Ans: (a) 
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2.6.2 NON-UNIFORM FLOW 

If the fluid particles in a fluid flow do not move with same velocity and 

change from one point to another then flow is called non-uniform flow. 

In non-uniform flow, the velocity may change with position. 

2.6.3 STEADY FLOW 

A fluid flow in which the flow pattern is independent of time is called 

steady flow i.e. properties like pressure, velocity, temperature etc. 

remain unchanged with time. 

2.6.4 UNSTEADY FLOW 

A fluid flow in which the flow pattern depends on time is called 

unsteady flow i.e. properties like pressure, velocity, temperature etc. 

change with time. 

2.7 VELOCITY POTENTIAL 

 

Let 𝑣⃗ = 𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂ be the velocity vector at a time 𝑡 in an 

incompressible fluid then a scalar function ∅ of space and time is 

called velocity potential if it follows 

𝑣⃗ = −∇∅ = −𝑔𝑟𝑎𝑑 ∅  

i.e. 

𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂ = − (
𝜕∅

𝜕𝑥
𝑖̂ +

𝜕∅

𝜕𝑦
𝑗̂ +

𝜕∅

𝜕𝑧
𝑘̂)  

Or     𝑣1 = −
𝜕∅

𝜕𝑥
,          𝑣2 = −

𝜕∅

𝜕𝑦
       and     𝑣3 = −

𝜕∅

𝜕𝑧
 . 

Remarks: 1. The necessary and sufficient condition for 

velocity potential is that flow should be irrotational  i.e. 

∇ × 𝑣⃗ = 0  



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 
UTTARAKHAND OPEN UNIVERSITY                                                          22 
 

0r    (
𝜕𝑣3

𝜕𝑦
−

𝜕𝑣2

𝜕𝑧
) 𝑖̂ + (

𝜕𝑣1

𝜕𝑧
−

𝜕𝑣3

𝜕𝑥
) 𝑗̂ + (

𝜕𝑣2

𝜕𝑥
−

𝜕𝑣1

𝜕𝑦
) 𝑘̂ = 0.  

2. If the velocity potential ∅ exists, then it satisfies Laplace equation 

i.e.  

𝜕2∅

𝜕𝑥2 +
𝜕2∅

𝜕𝑦2 +
𝜕2∅

𝜕𝑧2 = 0. 

 

2.8 VORTICITY VECTOR 

 

Let 𝑣⃗ = 𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂ be fluid velocity then the vector Ω is called 

vorticity vector and defined as 

Ω = ∇ × 𝑣⃗ . 

i.e.     Ω = (
𝜕𝑣3

𝜕𝑦
−

𝜕𝑣2

𝜕𝑧
) 𝑖̂ + (

𝜕𝑣1

𝜕𝑧
−

𝜕𝑣3

𝜕𝑥
) 𝑗̂ + (

𝜕𝑣2

𝜕𝑥
−

𝜕𝑣1

𝜕𝑦
) 𝑘̂.  

The components 𝛺𝑥 , 𝛺𝑦  and 𝛺𝑧 of vorticity vector  are  

𝛺𝑥𝑖̂ + 𝛺𝑦𝑗̂ + 𝛺𝑧𝑘̂ = (
𝜕𝑣3

𝜕𝑦
−

𝜕𝑣2

𝜕𝑧
) 𝑖̂ + (

𝜕𝑣1

𝜕𝑧
−

𝜕𝑣3

𝜕𝑥
) 𝑗̂ + (

𝜕𝑣2

𝜕𝑥
−

𝜕𝑣1

𝜕𝑦
) 𝑘̂  

Therefore  

𝛺𝑥 = (
𝜕𝑣3

𝜕𝑦
−

𝜕𝑣2

𝜕𝑧
),     𝛺𝑦 = (

𝜕𝑣1

𝜕𝑧
−

𝜕𝑣3

𝜕𝑥
)    and    𝛺𝑧 = (

𝜕𝑣2

𝜕𝑥
−

𝜕𝑣1

𝜕𝑦
). 

 

2.9 SOLVED EXAMPLES 

 

Example 1: Determine the equation of stream lines for the velocity 

vector 𝑣 = 𝑥 𝑖̂ + 𝑦 𝑗̂  passing through point (2,1). 

Solution: The given velocity vector is 

    𝑣 = 𝑥 𝑖̂ + 𝑦 𝑗̂. 
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Comparing the above vector with 𝑣 = 𝑣1𝑖̂ + 𝑣2𝑗̂, we have 

𝑣1 = 𝑥   and       𝑣2 = 𝑦. 

Then, equation of stream lines is 

𝑑𝑥

𝑣1
=

𝑑𝑦

𝑣2
           therefore                  

𝑑𝑥

𝑥
=

𝑑𝑦

𝑦
  .    

On solving above system, we have 

𝑑𝑥

𝑥
=

𝑑𝑦

𝑦
     i.e.   log 𝑥 − log 𝑦 = log 𝑐      i.e.     

𝑥

𝑦
= 𝑐                      ...(1) 

where 𝑐 is constant of integration. 

As, the stream lines passes through point (2,1), therefore 𝑐 = 2. 

Thus, the stream line is  𝑥 − 2𝑦 = 0 . 

Example 2: Determine the equation of stream lines passing through 

(1,2,1) for the velocity vector 𝑣 = 𝑥 𝑖̂ − 2𝑦 𝑗 ̂+2z𝑘̂. 

Solution: The given velocity vector is 

    𝑣 = 𝑥 𝑖̂ − 2𝑦 𝑗̂ +2z𝑘̂.  

Comparing the above vector with 𝑣 = 𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂, we have 

𝑣1 = 𝑥,       𝑣2 = −2𝑦     and     𝑣3 = 2𝑧. 

Then, equation of stream lines is 

𝑑𝑥

𝑣1
=

𝑑𝑦

𝑣2
=

𝑑𝑧

𝑣3
           therefore                  

𝑑𝑥

𝑥
=

𝑑𝑦

−2𝑦
=

𝑑𝑧

2𝑧
  .    

On solving above system, we have 

𝑑𝑥

𝑥
=

𝑑𝑦

−2𝑦
     i.e.   log 𝑥 + 𝑙𝑜𝑔 𝑦2 = log 𝑐1      i.e.     𝑥 𝑦2 = 𝑐1.    .... (1) 

And,  
𝑑𝑥

𝑥
=

𝑑𝑧

2𝑧
      i.e.   log 𝑥 − 𝑙𝑜𝑔 𝑧2 = log 𝑐2    i.e.   

𝑥

 𝑧2
= 𝑐2.    .... (2) 
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Thus, the stream lines are provided by intersection of (1) and (2), 

where 𝑐1 and 𝑐2 are constants of integration. As, the streamlines passes 

through point (1,2,1) therefore 𝑐1 = 4 and 𝑐2 = 1.  

Thus, the required stream line is provided by interaction of curves 

𝑥 𝑦2 = 4 and  
𝑥

 𝑧2
= 1. 

Example 3: Find the stream lines for the flow whose velocity 

components are 𝑣1 =
𝑥𝑡

1+𝑡2 ,  𝑣2 =
2𝑦𝑡

1+𝑡2 and 𝑣3 =
𝑧𝑡

1+𝑡2.  

Solution: The given velocity components are 

   𝑣1 =
𝑥𝑡

1+𝑡2 ,       𝑣2 =
2𝑦𝑡

1+𝑡2     and     𝑣3 =
𝑧𝑡

1+𝑡2. 

Then, equation of stream lines is 

𝑑𝑥

𝑣1
=

𝑑𝑦

𝑣2
=

𝑑𝑧

𝑣3
           therefore                  

𝑑𝑥

(
𝑥𝑡

1+𝑡2)
=

𝑑𝑦

(
2𝑦𝑡

1+𝑡2)
=

𝑑𝑧

(
𝑧𝑡

1+𝑡2)
  .    

On solving above system, we have 

𝑑𝑥

(
𝑥𝑡

1+𝑡2)
=

𝑑𝑦

(
2𝑦𝑡

1+𝑡2)
     i.e.   log 𝑥 − log 𝑦2 = log 𝑐1      i.e.     

𝑥

 𝑦2 = 𝑐1.    ...(1) 

And,   
𝑑𝑥

(
𝑥𝑡

1+𝑡2)
=

𝑑𝑧

(
𝑧𝑡

1+𝑡2)
       i.e.   log 𝑥 − log 𝑧 = log 𝑐2      i.e.     

𝑥

𝑧
= 𝑐2.    

                                                                                                        …(2) 

Thus, the stream lines are provided by intersection of (1) and (2), 

where 𝑐1 and 𝑐2 are constants of integration.  

Example 4: Find the stream lines for the flow whose velocity 

components are 𝑣1 =
𝑥

1+𝑡
 ,  𝑣2 = 𝑦 and 𝑣3 = 0.  

Solution: The given velocity components are 

   𝑣1 =
𝑥

1+𝑡
 ,       𝑣2 = 𝑦     and     𝑣3 = 0.  

Then, equation of stream lines is 
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𝑑𝑥

𝑣1
=

𝑑𝑦

𝑣2
=

𝑑𝑧

𝑣3
           therefore                  

𝑑𝑥

(
𝑥

1+𝑡
)

=
𝑑𝑦

𝑦
=

𝑑𝑧

0
  .    

On solving above system, we have 

𝑑𝑥

(
𝑥

1+𝑡
)

=
𝑑𝑦

𝑦
     i.e.   (1 + t)log 𝑥 − log 𝑦 = log 𝑐1      i.e.     

𝑥(1+𝑡)

𝑦
= 𝑐1   

                                                                                                          ...(1) 

And,  𝑑𝑧 = 0       i.e.   𝑧 = 𝑐2                                                           ...(2) 

Thus, the stream lines are provided by intersection of (1) and (2), 

where 𝑐1 and 𝑐2 are constants of integration. 

Example 5: Determines the path lines for the flow whose velocity 

components are 𝑣1 =
2𝑥

3−𝑡
 ,  𝑣2 =

𝑦

1+𝑡
 and 𝑣3 =

𝑧

2+𝑡
 . 

Solution: The given velocity components are 

   𝑣1 =
2𝑥

3−𝑡
 ,       𝑣2 =

𝑦

1+𝑡
     and     𝑣3 =

𝑧

2+𝑡
.  

Then, equation of path lines is 

𝑑𝑥

𝑑𝑡
= 𝑣1,      

𝑑𝑦

𝑑𝑡
= 𝑣2      and       

𝑑𝑧

𝑑𝑡
= 𝑣3.  

On solving above system, we have 

𝑑𝑥

𝑑𝑡
=

2𝑥

3−𝑡
     i.e.   

𝑑𝑥

2𝑥
=

𝑑𝑡

3−𝑡
       i.e.   log 𝑥 − log(3 − 𝑡)2 = log 𝑐1        

i.e.     𝑥 = 𝑐1(3 − 𝑡)2, 

𝑑𝑦

𝑑𝑡
=

𝑦

1+𝑡
       i.e.   

𝑑𝑦

𝑦
=

𝑑𝑡

1+𝑡
       i.e.   log 𝑦 − log(1 + 𝑡) = log 𝑐2        

i.e.     𝑦 = 𝑐2(1 + 𝑡), 

𝑑𝑧

𝑑𝑡
=

𝑧

2+𝑡
       i.e.   

𝑑𝑧

𝑧
=

𝑑𝑡

2+𝑡
       i.e.   log 𝑧 − log(2 + 𝑡) = log 𝑐3        i.e.     

𝑧 = 𝑐3(2 + 𝑡), 

Thus, the curves 𝑥 = 𝑐1(3 − 𝑡)2, 𝑦 = 𝑐2(1 + 𝑡) and 𝑧 = 𝑐3(2 + 𝑡) 

provides path lines, where 𝑐1, 𝑐2 and 𝑐3 are constants of integration. 
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Example 6: Determines the path lines for the flow whose velocity 

field is given as = (2𝑥𝑡,
𝑦

𝑡
, 0) . 

Solution: The given velocity components are 

   𝑣1 = 2𝑥𝑡 ,       𝑣2 =
𝑦

𝑡
     and     𝑣3 = 0 .  

Then, equation of path lines is 

𝑑𝑥

𝑑𝑡
= 𝑣1,      

𝑑𝑦

𝑑𝑡
= 𝑣2      and       

𝑑𝑧

𝑑𝑡
= 𝑣3.  

On solving above system, we have 

𝑑𝑥

𝑑𝑡
= 2𝑥𝑡     i.e.   

𝑑𝑥

𝑥
= 2𝑡 𝑑𝑡       i.e.   log 𝑥 − 𝑡2 = log 𝑐1        i.e.     

𝑥 = 𝑐1𝑒𝑡2
, 

𝑑𝑦

𝑑𝑡
=

𝑦

𝑡
       i.e.   

𝑑𝑦

𝑦
=

𝑑𝑡

𝑡
       i.e.   log 𝑦 − log 𝑡 = log 𝑐2        i.e.     𝑦 =

𝑐2𝑡, 

𝑑𝑧

𝑑𝑡
= 0       i.e.   𝑑𝑧 = 0       i.e.   𝑧 = 𝑐3.    

Thus, the curves 𝑥 = 𝑐1𝑒𝑡2
, 𝑦 = 𝑐2𝑡  and 𝑧 = 𝑐3  provides path lines, 

where 𝑐1, 𝑐2 and 𝑐3 are constants of integration. 

Example 7: Determines the path lines for the flow whose velocity 

components are 𝑣1 =
2𝑥𝑡

𝑡2−1
 ,  𝑣2 =

𝑦𝑡

𝑡2+1
 and 𝑣3 =

𝑧

𝑡−2
 . 

Solution: The given velocity components are 

   𝑣1 =
2𝑥𝑡

𝑡2−1
 ,       𝑣2 =

𝑦𝑡

𝑡2+1
     and     𝑣3 =

𝑧

𝑡−2
.  

Then, equation of path lines is 

𝑑𝑥

𝑑𝑡
= 𝑣1,      

𝑑𝑦

𝑑𝑡
= 𝑣2      and       

𝑑𝑧

𝑑𝑡
= 𝑣3.  

On solving above system, we have 
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𝑑𝑥

𝑑𝑡
=

2𝑥𝑡

𝑡2−1
     i.e.   

𝑑𝑥

𝑥
=

2𝑡 𝑑𝑡

𝑡2−1
       i.e.   log 𝑥 − log(𝑡2 − 1) = log 𝑐1        

i.e.     𝑥 = 𝑐1(𝑡2 − 1), 

𝑑𝑦

𝑑𝑡
=

𝑦𝑡

𝑡2+1
       i.e.   

𝑑𝑦

𝑦
=

𝑡 𝑑𝑡

𝑡2+1
     i.e.   log 𝑦 −

1

2
log(𝑡2 + 1) = log 𝑐2     

i.e.     𝑦 = 𝑐2(𝑡2 + 1)
1

2, 

𝑑𝑧

𝑑𝑡
=

𝑧

𝑡−2
       i.e.   

𝑑𝑧

𝑧
=

𝑑𝑡

𝑡−2
       i.e.   log 𝑧 − log(𝑡 − 2) = log 𝑐3        i.e.     

𝑧 = 𝑐3(𝑡 − 2) 

Thus, the curves 𝑥 = 𝑐1(𝑡2 − 1),  𝑦 = 𝑐2(𝑡2 + 1)
1

2 and 𝑧 = 𝑐3(𝑡 − 2) 

provides path lines, where 𝑐1, 𝑐2 and 𝑐3 are constants of integration. 

Example 8: If the velocity potential ∅ = 2(𝑥2 + 2𝑥𝑧 + 𝑦3), then find 

the velocity components. 

Solution: The velocity potential for three - dimensional flow is 

∅ = 2(𝑥2 + 2𝑥𝑧 + 𝑦3). 

Then, the velocity components 𝑣1, 𝑣2 and 𝑣3 are 

𝑣1 = −
𝜕∅

𝜕𝑥
,          𝑣2 = −

𝜕∅

𝜕𝑦
       and     𝑣3 = −

𝜕∅

𝜕𝑧
 . 

Therefore, 

𝑣1 = −4(𝑥 + 𝑧),          𝑣2 = −6𝑦       and       𝑣3 = −4𝑥.  

Example 9: If the velocity vector is given by 𝑣 = 2𝑥2𝑦𝑧𝑖̂ + 𝑎𝑥𝑧𝑗̂ +

𝑏𝑥𝑦2𝑧𝑘̂, then find the vorticity components.  

Solutions: The given velocity vector is 

     𝑣 = 2𝑥2𝑦𝑧𝑖̂ + 𝑎𝑥𝑧𝑗̂ + 𝑏𝑥𝑦2𝑧𝑘̂.  

Comparing the above vector with 𝑣 = 𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂, we have 

𝑣1 = 2𝑥2𝑦𝑧,       𝑣2 = 𝑎𝑥𝑧     and     𝑣3 = 𝑏𝑥𝑦2𝑧. 

Then, the vorticity components are  
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𝛺𝑥 = (
𝜕𝑣3

𝜕𝑦
−

𝜕𝑣2

𝜕𝑧
),     𝛺𝑦 = (

𝜕𝑣1

𝜕𝑧
−

𝜕𝑣3

𝜕𝑥
)    and    𝛺𝑧 = (

𝜕𝑣2

𝜕𝑥
−

𝜕𝑣1

𝜕𝑦
). 

Therefore, 

𝛺𝑥 = 2𝑏𝑥𝑦𝑧 − 𝑎𝑥,         𝛺𝑦 = 2𝑥2𝑦 − 𝑏𝑦2𝑧,           𝛺𝑧 = 𝑎𝑧 − 2𝑥2𝑧. 

Example 10: Determine the vorticity vector If the velocity vector is 

given by 𝑣 = (𝑎𝑥𝑦2 + 𝑧)𝑖̂ + (𝑏𝑦 + 𝑥𝑧2)𝑗̂ + (𝑥 + 𝑐𝑦𝑧2)𝑘̂. 

Solution: The given velocity vector is 

     𝑣 = (𝑎𝑥𝑦2 + 𝑧)𝑖̂ + (𝑏𝑦 + 𝑥𝑧2)𝑗̂ + (𝑥 + 𝑐𝑦𝑧2)𝑘̂.  

Comparing the above vector with 𝑣 = 𝑣1𝑖̂ + 𝑣2𝑗̂ + 𝑣3𝑘̂, we have 

𝑣1 = 𝑎𝑥𝑦2 + 𝑧,       𝑣2 = 𝑏𝑦 + 𝑥𝑧2     and     𝑣3 = 𝑐𝑥 + 𝑦𝑧2. 

Then, the vorticity vector is 

𝛺 = 𝛺𝑥𝑖̂ + 𝛺𝑦𝑗̂ + 𝛺𝑧𝑘̂  

where 

𝛺𝑥 = (
𝜕𝑣3

𝜕𝑦
−

𝜕𝑣2

𝜕𝑧
),     𝛺𝑦 = (

𝜕𝑣1

𝜕𝑧
−

𝜕𝑣3

𝜕𝑥
)    and    𝛺𝑧 = (

𝜕𝑣2

𝜕𝑥
−

𝜕𝑣1

𝜕𝑦
). 

Therefore, 

𝛺𝑥 = 𝑧2 − 2𝑥𝑧,           𝛺𝑦 = 1 − 𝑐       and         𝛺𝑧 = 𝑧2 − 2𝑎𝑥𝑦. 

Thus, the vorticity vector is  

𝛺 = (𝑧2 − 2𝑥𝑧)𝑖̂ + (1 − 𝑐)𝑗̂ + (𝑧2 − 2𝑎𝑥𝑦)𝑘̂ . 
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2.10 SUMMARY 

 

This unit explains  

1. Definitions of streamlines, path lines and stream tubes with 

examples. 

2. Relations and differences between streamlines and path lines. 

3. Definitions of uniform flow, non-uniform flow, steady flow, 

unsteady flow, velocity potential, vorticity vector with 

examples. 

4. Necessary and sufficient condition for velocity potential. 

2.11 GLOSSARY 

 

i. Fluid Flow 

ii. Density 

iii. Volume 

iv. Pressure 

 

2.12 REFERENCES AND SUGGESTED 

READINGS 

(i) M. D. Raisinghanai (2013), Fluid Dynamics, S. Chand 

& Company Pvt. Ltd. 

(ii) Frank M. White (2011), Fluid Mechanics, McGraw Hill. 

(iii) John Cimbala and Yunus A Çengel (2019), Fluid 

Mechanics: Fundamentals and Applications, McGraw 

Hill. 

(iv) P.K. Kundu, I.M. Cohen & D.R. Dowling (2015), Fluid 

Mechanics, Academic Press; 6th edition. 

(v) F.M. White & H. Xue (2022), Fluid Mechanics, 

McGraw Hill; Standard Edition. 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
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(vi) S.K. Som, G. Biswas, S. Chakraborty (2017), 

Introduction to Fluid Mechanics and Fluid Machines, 

McGraw Hill Education; 3rd edition. 

 

2.13 TEWRMINAL QUESTIONS 

 

1. The stream lines and path lines are identical if  

(a) Flow is steady 

(b) Flow is uniform 

(c) Flow velocities do not change steadily with time 

(d) Flow is neither steady nor uniform 

2. The flow in which the velocity of fluid particle at a given instant 

changes is called 

(a) Uniform flow 

(b) Non-Uniform flow 

(c) Compressible Flow 

(d) Incompressible flow 

3. The stream line represents 

(a) trajectory of fluid particle during its motion 

(b) curve in fluid such that the tangent at its any point indicates the 

direction of motion 

(c) velocity at any point 

(d) Nature of fluid. 

4. If the velocity at any point does not change with time, then flow is 
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(a) Laminar 

(b) Non-uniform 

(c) Steady 

(d) Unsteady 

5. If the motion is irrotational the vorticity vector is…………… 

6. Which of the following function is valid for velocity potential ∅ ? 

(a) 2𝑥2𝑦 

(b) 𝑥2 − 𝑦 

(c) 𝑥2 + 𝑦 

(d) 𝑥2 − 𝑦2 

Hint: The velocity potential satisfies Laplace equation 
𝜕2∅

𝜕𝑥2 +
𝜕2∅

𝜕𝑦2 +

𝜕2∅

𝜕𝑧2 = 0 

7. In a three-dimensional fluid flow, if a velocity potential ∅ exists if 

fluid flow is 

(a) Steady Compressible. 

(b) Steady laminar incompressible. 

(c) Turbulent incompressible. 

(d) Incompressible and Irrotational. 

8. If the function ∅ = 2𝑎𝑥3 − 𝑥𝑦2 represents the velocity potential the 

value of 𝑎 is 

(a) 6 

(b) −6 

(c) 
1

6
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(d) −
1

6
 

9. True/false 

(a) The velocity potential exists for rotational motion. 

(b) The velocity potential exists for irrotational motion. 

(c) If the motion is irrotational then vorticity vector is 1.  

(d) If the motion is irrotational then vorticity vector is 0.  

10. The velocity components for incompressible fluid are (𝑥, 2𝑦, −2𝑧), 

find the equation of stream line passing through (1,2,2). 

11. The velocity components for two dimensional fluid flow are 𝑣1 =

𝑒𝑥 and  𝑣2 = sinh 𝑦, find the equation of stream line. 

12. Determine the equation of stream lines passing through (1,2,2) for 

the velocity vector 𝑣 = 𝑥2 𝑖̂ − 𝑦 𝑗 ̂+2𝑧2𝑘̂. 

13. Find the streamlines for the flow whose velocity components are 

𝑣1 = 𝑥 − 𝑡 + 1 and 𝑣2 = −𝑦 − 𝑡 + 2.  

14. If the velocity is constant everywhere, show that the stream lines 

are straight lines. 

15. Determines the path lines for the flow whose velocity components 

are 𝑣1 =
𝑥

1+2𝑡
 ,  𝑣2 =

𝑦2

2−𝑡
 and 𝑣3 =

5𝑧

3+𝑡
 . 

16.  Determines the path lines for the flow whose velocity field is 

given as = (𝑥𝑡,
𝑦

𝑡2
, 𝑧) . 

17. Determines the path lines for the flow whose velocity components 

are 𝑣1 =
𝑥𝑡

𝑡2+1
 ,  𝑣2 =

3𝑦𝑡

𝑡2−1
 and 𝑣3 =

𝑧2

1+2𝑡
 . 

18. If the velocity vector is given by 𝑣 = 2𝑎𝑥𝑧𝑖̂ + 3𝑏𝑥𝑦2𝑧𝑗̂ + 2𝑐𝑥2𝑧𝑘̂, 

then find the vorticity component. 
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19. Determine the vorticity vector If the velocity vector is given by 

𝑣 = (𝑥𝑦2 − 2𝑧)𝑖̂ + (3𝑦 + 𝑥𝑧2)𝑗̂ + (5𝑐𝑥 + 𝑥𝑦2𝑧)𝑘̂.  

20. Distinguish between stream lines and path lines. 

 

2.14 ANSWERS 

 

1. (a) 

2. (b) 

3. (b) 

4. (c) 

5. 0 

6. (d) 

7. (d) 

8. (c) 

9 (a) F,          (b) T,          (c) F,          (d) T 
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UNIT 3: EQUATION OF CONTINUITY 

 

CONTENTS: 

3.1 Introduction  

3.2 Objectives 

3.3 Equation of continuity 

3.3.1 Equation of continuity by Euler’s method 

3.3.2 Equation of continuity in Cartesian coordinates 

3.3.3 Equation of continuity in cylindrical coordinates 

3.3.4 Equation of continuity in spherical polar coordinates 

3.4 Local and particle rates of changes 

3.5 Acceleration of a fluid 

3.6 Boundary conditions 

3.6.1 Conditions at a boundary surface  

3.6.2 Example based on equation of continuity  

3.7 Summary 

3.8 Glossary 

3.9 References and Suggested Readings 

3.10 Terminal questions 
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3.1 INTRODUCTION 

 

The transfer of various quantities, such as fluid or gas, is described 

by the continuity equation. The formula describes how a fluid conserves 

mass while moving. How a fluid conserves mass while moving is described 

by the equation. The continuity equations can be used to demonstrate the 

conservation of a wide range of physical phenomena, including energy, 

mass, momentum, natural numbers, and electric charge. The continuity 

equation offers useful knowledge about the flow of fluids and their behavior 

as they go through a pipe or hose. The Continuity Equation is used on a 

variety of objects, including tubes, pipes, rivers, and ducts that carry gases 

or liquids. The continuity equation can be written in differential form, which 

is applied at a point, or in integral form, which is applied in a finite region. 

In this unit, equation of continuity and develop the equation of continuity in 

different type of co-ordinates are defined.  

In analyzing the fluid motion, local and particle rates of change is 

very important. Also, acceleration of a fluid plays vital role in fluid 

dynamics. So, this chapter define such key factor of fluid dynamics. 

Appropriate boundary conditions are also developed. 

 

3.2 OBJECTIVES 

 

 After completion of this unit learners will be able to: 

(i) Define the concept of equation of continuity. 

(ii) Develop the equation of continuity in various type of co-ordinates. 

(iii) Describe the local and particle rates of changes 

(iv) Define the acceleration of a fluid 

(v) Explain and derive the Boundary condition 
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3.3 EQUATION OF CONTINUITY 

 

The law of conservation of mass states that fluid mass can be either 

created nor destroyed. The equation of continuity aims at expressing the law 

of conservation of mass in a mathematical form. Thus, in continuous 

motion, the equation of continuity expresses the fact that the increase in the 

mass of the fluid within any closed surface drawn in the fluid in any time 

must be equal to the excess of the mass that flows in over the mass that 

flows out.   

 

3.3.1 EQUATION OF CONTINUITY BY EULER’S METHOD 

Let 𝑆 be an arbatrary small closed surface drawn in the compressible 

fluid enclosing a volume 𝑉 and let 𝑆 be taken fixed in space. Let 𝑃(𝑥, 𝑦, 𝑧) 

be any point of 𝑆 and 𝜌(𝑥, 𝑦, 𝑧, 𝑡) be the fluid density at 𝑃 at any time t. Let 

𝛿𝑆 denote element of the surface 𝑆 esclosing 𝑃. Let 𝐧 be the unit outward-

drawn normal at 𝛿𝑆 and let 𝐪 be the fluid velocity at 𝑃. Then the normal 

component of 𝐪 measured outwards from 𝑉 is 𝑛. Thus 

 

Rate of mass flow across 𝛿𝑆 = 𝜌(𝐧 ⋅ 𝒒)𝛿𝑆 

∴ Total rate of mass flow across 𝑆 

= ∫ 
𝑆

𝜌(𝐧 ⋅ 𝐪)𝛿𝑆 = ∫  
𝑉

∇ ⋅ (𝜌𝐪)𝑑𝑉 
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(By Gauss divergence theorem) 

  

∴ Total rate of mass flow into 𝑉 = −∫
𝑉

 ∇ ⋅ (𝜌𝐪)𝑑𝑉           (3.1) 

Again, the mass of the fluid within S at time 𝑡 = −∫
𝑉

 𝜌𝑑𝑉  

∴ Total rate of mass increase within 𝑆 =
∂

∂t
∫

𝑉
 𝜌𝑑𝑉 = ∫

𝑉
 
∂𝜌

∂t
𝑑𝑉     (3.2) 

              Suppose that the region 𝑉 of the fluid contains neither sources nor 

sinks (i.e., there are no inlets or outlets through which fluid can enter or 

leave the region). Then by the law of conservation of the fluid mass, the rate 

of increase of the mass of fluid within 𝑉 must be equal to the total rate of 

mass flowing into 𝑉. Hence from (3.1) and (3.2), we have 

∫  
𝑉

∂𝜌

∂𝑡
𝑑𝑉 = − ∫  

𝑉

∇ ⋅ (𝜌𝐪)𝑑𝑉          or                ∫  
𝑉

[
∂𝜌

∂𝑡
+ ∇ ⋅ (𝜌𝐪)] 𝑑𝑉 = 0 

which holds for arbitrary small volumes 𝑉 , if   
∂𝑝

∂𝑡
+ ∇ ⋅ (𝜌𝑞) = 0          (3.3) 

Equation (3.3) is called the equation of continuity, or the 

conservation of mass and it holds at all points of fluid free from sources and 

sinks.  

3.3.2 THE EQUATION OF CONTINUITY IN CARTESIAN 

COORDINATES 

 Let there be a fluid particle at 𝑃(𝑥, 𝑦, 𝑧). Let 𝜌(𝑥, 𝑦, 𝑧, 𝑡) be the 

density of the fluid at 𝑃 at any time 𝑡 and let 𝑢, 𝑣, 𝑤 be the velocity 

components at 𝑃 parallel to the rectangular coordinate axes. Construct a 

small parallelepiped with edges 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 of lengths parallel to their 

respective coordinate axes, having 𝑃 at one of the angular points as shown 

in figure. Then, we have  
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Mass of the fluid that passes in through the face 𝑃𝑄𝑅𝑆 

= (𝜌𝛿𝑦𝛿𝑧)𝑢 per unit time = 𝑓(𝑥, 𝑦, 𝑧) say        (3.4) 

∴ Mass of the fluid that passes out through the opposite face 𝑃′𝑄′𝑅′𝑆 

= 𝑓(𝑥 + 𝛿𝑥, 𝑦, 𝑧) per unit time = 𝑓(𝑥, 𝑦, 𝑧) + 𝛿𝑥
∂

∂𝑥
𝑓(𝑥, 𝑦, 𝑧) + ⋯    (3.5) 

(expanding by Taylor's theorem) 

∴ The net gain in mass per unit time within the element (rectangular 

parallelepiped) due to flow through the faces PQRS and 𝑃′𝑄′𝑅′𝑆′ by using 

(3.4) and (3.5) 

=  Mass that enters in through the face 𝑃𝑄𝑅𝑆
−  Mass that leaves through the face P'Q'R'S'   

= 𝑓(𝑥, 𝑦, 𝑧) − [𝑓(𝑥, 𝑦, 𝑧) + 𝛿𝑥 ⋅
∂

∂𝑥
𝑓(𝑥, 𝑦, 𝑧) + ⋯ ] 

= −𝛿𝑥 ⋅
∂

∂𝑥
𝑓(𝑥, 𝑦, 𝑧), to the first order of approximation  

= −𝛿𝑥 ⋅
∂

∂𝑥
(𝜌𝑢𝛿𝑦𝛿𝑧), by (3.4)  

= −𝛿𝑥𝛿𝑦𝛿𝑧
∂(𝜌𝑢)

∂𝑥
            (3.6) 

Similarly, the net gain in mass per unit time within the element due 

to flow through the faces 𝑃𝑃′𝑆′𝑆 and 𝑄𝑄′𝑅𝑅′ = −𝛿𝑥𝛿𝑦𝛿𝑧
∂(𝜌𝑣)

∂𝑦
     (3.7) 

and the net gain in mass per unit time within the element due to flow through 

the faces 𝑃𝑃′𝑄𝑄 and 𝑆𝑆′𝑅′𝑅  = −𝛿𝑥𝛿𝑦𝛿𝑧
∂(𝜌𝑤)

∂𝑧
                       (3.8) 
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∴ Total rate of mass flow into the elementary parallelepiped 

= −𝛿𝑥𝛿𝑦𝛿𝑧 [
∂(𝜌𝑢)

∂𝑥
+

∂(𝜌𝑣)

∂𝑦
+

∂(𝜌𝑤)

∂𝑧
]                     (3.9) 

Again, the mass of the fluid within the chosen element at time 𝑡 = 𝜌𝛿𝑥𝛿𝑦𝛿𝑧 

∴ Total rate of mass increase within the element 

=
∂

∂𝑡
(𝜌𝛿𝑥𝛿𝑦𝛿𝑧) = 𝛿𝑥𝛿𝑦𝛿𝑧

∂𝜌

∂𝑡
    (3.10) 

Suppose that the chosen region (bounded by the elementary 

parallelepiped) of the fluid contains neither sources nor sinks. Then by the 

law of conservation of the fluid mass, the rate of increase of the mass of the 

fluid within the element must be equal to the rate of mass flowing into the 

element. Hence from (6) and (7), we have  

   𝛿𝑥𝛿𝑦𝛿𝑧
∂𝜌

∂𝑡
= −𝛿𝑥𝛿𝑦𝛿𝑧 [

∂(𝜌𝑢)

∂𝑥
+

∂(𝜌𝑣)

∂𝑦
+

∂(𝜌𝑤)

∂𝑧
] 

or     
∂𝜌

∂𝑡
+

∂(𝜌𝑢)

∂𝑥
+

∂(𝜌𝑣)

∂𝑦
+

∂(𝜌𝑤)

∂𝑧
= 0           (3.11)   

or                  
∂𝜌

∂𝑡
+ 𝜌

∂𝑢

∂𝑥
+ 𝑢

∂𝜌

∂𝑥
+ 𝜌

∂𝑣

∂𝑦
+ 𝑣

∂𝜌

∂𝑦
+ 𝜌

∂𝑤

∂𝑧
+ 𝑤

∂𝜌

∂𝑧
= 0 

or          [
∂

∂𝑡
+ 𝑢

∂

∂𝑥
+ 𝑣

∂

∂𝑦
+ 𝑤

∂

∂𝑧
] 𝜌 + 𝜌 (

∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
+

∂𝑤

∂𝑧
) = 0 

or   
𝐷𝜌

𝐷𝑡
+ 𝜌 (

∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
+

∂𝑤

∂𝑧
) = 0    (3.12) 

which is the desired equation of continuity in cartesian coordinates and it 

holds at all point of the fluid free from sources and sinks. 

 

3.3.3 THE EQUATION OF CONTINUITY IN CYLINDRICAL 

COORDINATES  

Let there be a fluid particle at P whose cylindrical coordinates are 

(𝑟, 𝜃, 𝑧), where 𝑟 ≥ 0,0 ≤ 𝜃 ≤ 2𝜋, −∞ < 𝑧 < ∞. Let 𝜌(𝑟, 𝜃, 𝑧, 𝑡) be the 

density of the fluid at 𝑃 at any time 𝑡. With 𝑃 as one corner construct a small 

curvilinear parallelepiped ( 𝑃𝑄𝑅𝑆, 𝑃′𝑄′𝑅′𝑆′ ) with its edges 𝑆𝑆′ = 𝛿𝑟, arc 

𝑆𝑃 = 𝑟𝛿𝜃 and 𝑃𝑄 = 𝛿𝑧. Let 𝑞𝑟 , 𝑞𝜃  and 𝑞𝑧 be the velocity components in 

the direction of the elements 𝑆𝑆′, arc 𝑆𝑃 and 𝑃𝑄 respectively. Then, we 

have Mass of the fluid that passes in through the face PSRQ   
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= 𝜌 ⋅ 𝑟𝛿𝜃𝛿𝑧 ⋅ 𝑞𝑟 per unit time = 𝑓(𝑟, 𝜃, 𝑧), say    (3.13) 

∴ Mass of the fluid that passes out through the opposite face 𝑃′𝑆′𝑅′𝑄′ 

= 𝑓(𝑟 + 𝛿𝑟, 𝜃, 𝑧) per unit time = 𝑓(𝑟, 𝜃, 𝑧) + 𝛿𝑟
∂

∂𝑟
𝑓(𝑟, 𝜃, 𝑧) + ⋯     (3.14) 

        (expanding by Taylor's theorem) 

 

 

∴ The net gain in mass per unit time within the chosen elementary 

parallelepiped (PQRS, 𝑃′𝑄′𝑅′𝑆′ ) due to flow through the faces 𝑃𝑆𝑅𝑄 and 

𝑃′𝑆𝑅′𝑄′ by using (3.13) and (3.14) 

=  Mass that enters in through the face 𝑃𝑄𝑅𝑆

−  Mass that leaves through the face P
'
Q

'
R

'
S

'
   

= 𝑓(𝑟, 𝜃, 𝑧) − [𝑓(𝑟, 𝜃, 𝑧) + 𝛿𝑟 ⋅
∂

∂𝑟
𝑓(𝑟, 𝜃, 𝑧) + ⋯ ] 

 = −𝛿𝑟 ⋅
∂

∂𝑟
𝑓(𝑟, 𝜃, 𝑧). to the first order of approximation 

 = −𝛿𝑟 −
∂

∂𝑟
(𝜌𝑟𝛿𝜃𝛿𝑧𝑞𝑟), by (3.13) 

  = −𝛿𝑟𝛿𝜃𝛿𝑧
∂(𝜌𝑟𝑞𝑟)

∂𝑟
                                                                                       (3.15) 

Similarly, the net gain in mass per unit time within the element due 

to flow through the faces 𝑆𝑅𝑅′𝑆′ and 𝑄𝑃𝑃′𝑄′  

= −𝛿𝑟𝛿𝜃𝛿𝑧
∂

∂𝜃
(𝜌𝑞𝜃)                                                   (3.16)  
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and the net gain in mass per unit time within the element due to flow through 

the faces PSSP and 𝑄𝑅𝑅′𝑄′ 

= −𝛿𝑟𝛿𝜃𝛿𝑧
∂

∂𝑧
(𝜌𝑟𝑞𝑧) = −𝑟𝛿𝑟𝛿𝜃𝛿𝑧

∂(𝜌𝑞𝑧)

∂𝑧
        (3.17)                   

∴ Total rate of mass flow into the chosen element 

= −𝛿𝑟𝛿𝜃𝛿𝑧 [
∂

∂𝑟
(𝜌𝑟𝑞𝑟) +

∂

∂𝜃
(𝜌𝑞𝜃) + 𝑟

∂

∂𝑧
(𝜌𝑞𝑧)]          (3.18) 

Again, the mass of the fluid within the element at time 𝑡 = 𝜌𝑟𝛿𝑟𝛿𝜃𝛿𝑧  

∴ Total rate of mass increase within the element 

 =
∂

∂t
(𝜌𝑟𝛿𝑟𝛿𝜃𝛿𝑧) = 𝑟𝛿𝑟𝛿𝜃𝛿𝑧

∂𝜌

∂𝑡
    (3.19)                                       

Suppose that the chosen region of the element of the fluid contains 

neither sources nor sinks. Then by the law of conservation of the fluid mass, 

the rate of increase of the mass of the fluid within the element must be equal 

to the rate of mass flowing into the element. Hence from (3.18) and (3.19), 

we have 

𝑟𝛿𝑟𝛿𝜃𝛿𝑧
∂𝜌

∂𝑡
= −𝛿𝑟𝛿𝜃𝛿𝑧 [

∂

∂𝑟
(𝜌𝑟𝑞𝑟) +

∂

∂𝜃
(𝜌𝑞𝜃) + 𝑟

∂

∂𝑧
(𝜌𝑞𝑧)] 

or  
∂𝜌

∂𝑡
+

1

𝑟

∂

∂𝑟
(𝜌𝑟𝑞𝑟) +

1

𝑟

∂

∂𝜃
(𝜌𝑞𝜃) +

1

∂𝑧
(𝜌𝑞𝑧) = 0,  (3.20) 

which is the desired equation of continuity in cylindrical coordinates and it 

holds at all points of the fluid free from sources and sinks. 

3.3.4 THE EQUATION OF CONTINUITY IN SPHERICAL 

POLAR COORDINATES  

Let there be a fluid particle at 𝑃 whose spherical polar coordinates 

are (𝑟, 𝜃, 𝜙), where 𝑟 ≥ 0,0 ≤ 𝜙 ≤ 2𝜋, 0 ≤ 𝜃 ≤ 𝜋. Let 𝜌(𝑟, 𝜃, 𝜙, 𝑡) be the 

density of the fluid at 𝑃 at any time 𝑡. With 𝑃 as one corner construct a small 

curvilinear parallelopiped ( 𝑃𝑄𝑅𝑆, 𝑃′𝑄′𝑅′𝑆′ ) with its edges 𝑃𝑃′ = 𝛿𝑟, are 

𝑃𝑄 = 𝑟𝛿𝜃, are 𝑃𝑆 = 𝑟sin 𝜃𝛿𝜙. Let 𝑞𝑟 , 𝑞𝜃  and 𝑞𝜙 be the velocity 

components in the direction of the elements 𝑃𝑃′, are 𝑃𝑄 and arc 𝑃𝑆 

respectively. Then, we have  

Mass of the fluid that passes in through the face 𝑃𝑄𝑅𝑆 

= 𝜌 ⋅ 𝑟𝛿𝜃𝛿𝑟sin 𝜃𝛿𝜙 ⋅ 𝑞𝑟 per unit time = 𝑓(𝑟, 𝜃, 𝜙), say    (3.21) 
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∴ Mass of the fluid that passes out through the opposite face 𝑃𝑄′𝑅′𝑆 

= 𝑓(𝑟 + 𝛿𝑟, 𝜃, 𝜙) = 𝑓(𝑟, 𝜃, 𝜙) + 𝛿𝑟
∂

∂𝑟
(𝑟, 𝜃, 𝜙) + ⋯    (3.22) 

(expanding by Taylor's theorem)  

 

 

∴ The net gain in mass per unit time within the chosen elementary 

parallelopiped (PQRS, 𝑃′𝑄′𝑅′𝑆′ ) due to flow through the faces 𝑃𝑄𝑅𝑆 and 

𝑃′𝑄′𝑅′𝑆′ by using (3.21)and (3.22)  

= Mass that enters in through the face 𝑃𝑄𝑅𝑆 - Mass that leaves through the 

face 𝑃′𝑄′𝑅′𝑆′  

= 𝑓(𝑟, 𝜃, 𝜙) − [𝑓(𝑟, 𝜃, 𝜙) + 𝛿𝑟 ⋅
∂

∂𝑟
(𝑟, 𝜃, 𝜙) + ⋯ ] 

= −𝛿𝑟 ⋅
∂

∂𝑟
𝑓(𝑟, 𝜃, 𝜙), to the first order of approximation  

= −𝛿𝑟 ⋅
∂

∂𝑟
(𝜌𝑟2sin 𝜃𝑞, 𝛿𝜃𝛿𝜙), by (3.21)      (3.23) 

Similarly, the net gain in mass per unit time within the element due 

to flow through the faces 𝑃𝑆𝑆′𝑃′ and 𝑄𝑅𝑅′𝑄′ 

= −𝑟𝛿𝜃
∂

𝑟𝛿𝜃
(𝜌 ⋅ 𝛿𝑟 ⋅ 𝑟sin 𝜃𝛿𝜙 ⋅ 𝑞𝜃)      (3.24) 

and the net gain in mass per unit time within the element due to flow through 

the faces 𝑃𝑄𝑄′𝑃′and 𝑆𝑅𝑅′𝑆′ 
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= −𝑟sin 𝜃𝛿𝜙
1

𝑟sin 𝜃

∂

∂𝜙
(𝜌 ⋅ 𝛿𝑟𝑟𝛿𝜃 ⋅ 𝑞𝜃)                             (3.25) 

∴ Total rate of mass flow into the elementary parallelepiped 

= −𝛿𝑟𝛿𝜃𝛿𝑧 [sin 𝜃
∂

∂𝑟
(𝜌𝑟2𝑞𝑟) + 𝑟

∂

∂𝜃
(𝜌sin 𝜃𝑞𝜃) + 𝑟

∂

∂𝜙
(𝜌𝑞𝜙)]         (3.26) 

Again, the mass of the fluid within the chosen element at time 𝑡 =

−𝜌𝛿𝑟. 𝑟𝛿𝜃. 𝑟sin 𝜃𝛿𝜙 

∴ Total rate of mass increase within the element 

=
∂

∂𝑡
(𝜌𝑟2sin 𝜃𝛿𝑟𝛿𝜃𝛿𝜙) = 𝑟2sin 𝜃𝛿𝑟𝛿𝜃𝛿𝜙

∂𝜌

∂𝑡
             (3.27) 

Suppose that the chosen region of the fluid contains neither sources 

nor sinks. Then by the law of conservation of the fluid mass, the rate of 

increase of the fluid within the element must be equal to the rate of mass 

flowing into the element. Hence from (3.26) and (3.27), we have 

−𝛿𝑟𝛿𝜃𝛿𝑧 [sin 𝜃
∂

∂𝑟
(𝜌𝑟2𝑞𝑟) + 𝑟

∂

∂𝜃
(𝜌 sin 𝜃𝑞𝜃) + 𝑟

∂

∂𝜙
(𝜌𝑞𝜙)] = 𝑟2sin 𝜃𝛿𝑟𝛿𝜃𝛿𝜙

∂𝜌

∂𝑟 

or 

 
∂𝜌

∂𝑡
+

1

𝑟2

∂

∂𝑟
(𝜌𝑟2𝑞𝑟) +

1

𝑟sin 𝜃

∂

∂𝜃
(𝜌sin 𝜃𝑞𝜃) +

1

𝑟sin 𝜃

∂

∂𝜙
(𝜌𝑞𝜙) = 0,       (3.28) 

which is the desired equation of continuity in spherical polar coordinates 

and it bolds at all points of the fluid free from sources and sinks. 

 

3.4 LOCAL AND PARTICLES RATE OF 

CHANGES 

 

Suppose a particle of fluid moves form 𝑃(𝑥, 𝑦, 𝑧) at time 𝑡 to 𝑃′(𝑥 +

𝛿x, y + 𝛿y, z + 𝛿z) at time t + 𝛿 t. Let f(x, y, z, t) be a scalar function 

associated with some properties of fluid. Then, the motion of the particle 

from 𝑃 to 𝑃 ' the total change of is 

𝛿𝑓 =
𝛿𝑓

𝛿𝑥
𝛿𝑥 +

𝛿𝑓

𝛿𝑦
𝛿𝑦 +

𝛿𝑓

𝛿𝑧
𝛿𝑧 +

𝛿𝑓

𝛿𝑡
𝛿𝑡 

Thus, the total rate of change of 𝑓 at a point 𝑃 at a time 𝑡. 

In the motion of the particle, 
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𝑑𝑓

𝑑𝑡
= lim

𝛿𝑡→0
  (

𝛿𝑓

𝛿𝑥
)

 =
𝛿𝑓

𝛿𝑥

𝑑𝑥

𝑑𝑡
+

𝛿𝑓

𝛿𝑦

𝑑𝑦

𝑑𝑡
+

𝛿𝑓

𝛿𝑧

𝑑𝑧

𝑑𝑡
+

𝛿𝑓

𝛿𝑡

 = 𝑢
𝛿𝑓

𝛿𝑥
+ 𝑣

𝛿𝑓

𝛿𝑦
+ 𝑤

𝛿𝑓

𝛿𝑧
+

𝛿𝑓

𝛿𝑡

 

If q = [u, v, w] is the velocity of the fluid particle at 𝑃 

df

dt
= q. ∇f +

∂f

∂t
     (3.29) 

Similarly, for a velocity function F(x, y, z, t) associtated with some 

property of a fluid.  

dF

dt
= q. ∇F +

∂F

∂t
      (3.30) 

Hence, both the scalar and vector function of position and time, By 

operation equality 
d

dt
= q ⋅ ∇ +

∂

∂t
, provided that those functions are 

associated with the properties of the moving fluid. 

In the obtaining equation (3.29) and (3.30), we considered total 

change. When the fluid particle moves from 𝑝(𝑥, 𝑦, 𝑧) to 𝑃′(𝑥 + 𝛿𝑥, 𝑦 +

𝛿𝑦, 𝑧 + 𝛿𝑧) in time 𝛿𝑡. 

Thus, 
df

dt
,

dF

dt
 are a total differentiation following the fluid particles 

are called particle rates of change. 

On the other hand, particle time derivative 
∂f

∂t
,

∂F

∂t
 are only the time 

rates of change at the point 𝑝(𝑥, 𝑦, 𝑧). 

Consider fixed in space at a point p(x, y, z) they are the local rates 

of change. It follows that q. ∇f or q. ∇F. 

 

3.5 ACCELERATION OF A FLUID 

 

 Let velocity is a vector function of position and time and thus has 

three components u, v, and w, each a scalar field in itself:  

    𝐕(𝐫, 𝑡) = i𝑢(𝑥, 𝑦, 𝑧, 𝑡) + j𝑣(𝑥, 𝑦, 𝑧, 𝑡) + 𝐤𝑤(𝑥, 𝑦, 𝑧, 𝑡)    (3.31) 
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To write Newton's second law for an infinitesimal fluid system, we need to 

calculate the acceleration vector field a of the flow. Thus, we compute the 

total time derivative of the velocity vector: 

a =
𝑑𝐕

𝑑𝑡
= i

𝑑𝑢

𝑑𝑡
+ j

𝑑𝑣

𝑑𝑡
+ 𝐤

𝑑𝑤

𝑑𝑡
       (3.32) 

Since each scalar component (𝑢, 𝑣, 𝑤) is a function of the four variables 

(𝑥, 𝑦, 𝑧, 𝑡), we use the chain rule to obtain each scalar time derivative. For 

example, 

𝑑𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑡
=

∂𝑢

∂𝑡
+

∂𝑢

∂𝑥

𝑑𝑥

𝑑𝑡
+

∂𝑢

∂𝑦

𝑑𝑦

𝑑𝑡
+

∂𝑢

∂𝑧

𝑑𝑧

𝑑𝑡
 

But, by definition, 𝑑𝑥/𝑑𝑡 is the local velocity component 𝑢, and 𝑑𝑦/𝑑𝑡 =

𝑣, and 𝑑𝑧/𝑑𝑡 = 𝑤. The total time derivative of 𝑢 may thus be written as 

follows, with exactly similar expressions for the time derivatives of 𝑣 and  : 

𝑎𝑥 =
𝑑𝑢

𝑑𝑡
=

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ 𝑤

∂𝑢

∂𝑧
=

∂𝑢

∂𝑡
+ (𝐕 ⋅ ∇)𝑢

𝑎𝑦 =
𝑑𝑣

𝑑𝑡
=

∂𝑣

∂𝑡
+ 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
+ 𝑤

∂𝑣

∂𝑧
=

∂𝑣

∂𝑡
+ (𝐕 ⋅ ∇)𝑣

𝑎𝑧 =
𝑑𝑤

𝑑𝑡
=

∂𝑤

∂𝑡
+ 𝑢

∂𝑤

∂𝑥
+ 𝑣

∂𝑤

∂𝑦
+ 𝑤

∂𝑤

∂𝑧
=

∂𝑤

∂𝑡
+ (𝐕 ⋅ ∇)𝑤

    (3.33) 

Summing these into a vector, we obtain the total acceleration: 

a =
𝑑𝑉

𝑑𝑡
=

∂𝑉

∂𝑡
+ (𝑢

∂𝑉

∂𝑥
+ 𝑣

∂𝑉

∂𝑦
+ 𝑤

∂𝑉

∂𝑧
) =

∂𝑤

∂𝑡
+ (𝐕 ⋅ ∇)𝑉   (3.34) 

The term ∂𝐕/ ∂𝑡 is called the local acceleration, which vanishes if the flow 

is steadythat is, independent of time. The three terms in parentheses are 

called the convective acceleration, which arises when the particle moves 

through regions of spatially varying velocity, as in a nozzle or diffuser. 

Flows that are nominally "steady" may have large accelerations due to the 

convective terms. 
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3.6 BOUNDARY CONDITION 

  

 

When fluid is in contact with a rigid solid surface (or with another 

unmixed fluid), the following boundary condition must be satisfied in order 

to maintain contact: 

The fluid and the surface with which contact is preserved must have 

the same velocity normal to the surface. 

Let 𝐧 denote a normal unit vector drawn at the point 𝑃 of the surface 

of contact and let 𝐪 denote the fluid velocity at 𝑃. When the rigid surface of 

contact is at rest, we must have 𝐪 ⋅ 𝐧 = 0 at each point of the surface. This 

expresses the condition that the normal velocities are both zero and hence 

the fluid velocity is tangential to the surface at its each point as shown in 

Fig. (i). 

Next, let the rigid surface be in motion and let 𝐮 be its velocity at 𝑃 

(refer Fig (ii)]. Then we must have 

𝐪 ⋅ 𝐧 = 𝐮 ⋅ 𝐧  or  (𝐪 − 𝐮) ⋅ 𝐧 = 0, 

which expresses the fact that there must be no normal velocity at 𝑃 between 

boundary and fluid, that is, the velocity of the fluid relative to the boundary 

is tangential to the boundary at its each point.  

 

 

 

Remark. For inviscid fluid the above condition must be satisfied at the 

boundary. However, for viscous fluid (in which there is no slip), the fluid 
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and the surface with which contact is maintained must also have the same 

tangential velocity at 𝑃. 

The pressure of the fluid must act normal to the boundary. 

  Again, let 𝑆 denote the surface of separation of two fluids (which do 

not mix). Then the following additional condition must be satisfied: 

The pressure must be continuous at the boundary as we pass from 

one side of 𝑆 to the other.  

 

3.6.1 CONDITIONS AT A BOUNDARY SURFACE 

We propose to derive the differential equation satisfied by a 

boundary surface of a fluid. Thus, we discuss the following problem: 

To find the condition that the surface 𝐹(𝒓, 𝑡) = 0 or 𝐹(𝑥, 𝑦, 𝑧, 𝑡) = 0 may 

be a boundary surface. For figure, refer figure (ii) of Sec. 3.5. 

Let 𝑃 be a point on the moving boundary surface 

𝐹(𝐫, 𝑡) = 0.        (3.35) 

where the fluid velocity is 𝐪 and the velocity of the surface is 𝐮. 

Now in order to preserve contact, the fluid and the surface with 

which contact is to be maintained must have the same velocity normal to 

the surface. Thus, we have 

𝐪 ⋅ 𝐧 = 𝐮 ⋅ 𝐧    or (𝐪 − 𝐮) − 𝐧 = 0    (3.36) 

where 𝐧 in the unit normal vector drawn at 𝑃 on the boundary surface (3.35). 

We know that the direction ratios of 𝐧 are ∂𝐹/ ∂𝑥, ∂𝐹/ ∂𝑦, ∂𝐹/ ∂𝑧. Again, 

∇𝐹 = (∂𝐹/ ∂𝑥)𝐢 + (∂𝐹/ ∂𝑦)𝐣 + (∂𝐹/ ∂𝑧)𝐤,     (3.37) 

which shows that 𝐧 and ∇𝐹 are parallel vectors and hence we may write 

𝐧 = 𝑘∇𝐹. With this value of 𝐧, (3.37) reduces to 

(𝐪 − 𝐮) ⋅ 𝑘∇𝐹 = 0  so that  𝐪 ⋅ ∇𝐹 = 𝐮 ⋅ ∇𝐹   (3.38) 

Let 𝑃(𝐫, 𝑡) move to a point 𝑄(𝐫 + 𝛿𝐫, 𝑡 + 𝛿𝑡) in time 𝛿𝑡. Then 𝑄 must 

satisfy the equation of the boundary surface (3.35), at time 𝑡 + 𝛿𝑡, namely 

𝐹(𝐫 + 𝛿𝐫, 𝑡 + 𝛿𝑡) = 0 

Expanding by Taylor's theorem, the above equation gives 
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𝐹(𝐫, 𝑡) + 𝛿𝐫 ⋅ ∇𝐅 + 𝛿𝑡 (
∂𝐹

∂𝑡
) = 0  or  

∂𝐹

∂𝑡
+

𝛿𝐫

𝛿𝑡
⋅ ∇𝐅 = 0, using (3.35)    (3.39) 

Proceeding to the limits as 𝛿𝐫 → 0, 𝛿𝑡 → 0 and noting that 

lim
∂𝑡→0

 
𝛿𝐫

𝛿𝑡
=

𝑑𝐫

𝑑𝑡
= 𝐮,  (3.39) gives ∂𝐹/ ∂𝑡 + 𝐮 ⋅ ∇𝐅 = 0    (3.40) 

or  ∂𝐹/ ∂𝑡 + 𝐪 ⋅ ∇𝐅 = 0, using (3.38)     (3.41) 

which is the required condition for 𝐹(𝑟, 𝑡) to be a boundary surface. 

Remark 1. Let 𝐪 = 𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤. Then (3.41) may be re-written as 

∂𝐹

∂𝑡
+ (𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤) ⋅ (

∂𝐹

∂𝑥
𝐢 +

∂𝐹

∂𝑦
𝐣 +

∂𝐹

∂𝑧
𝐤) = 0 

or 
∂𝐹

∂𝑡
+ 𝑢

∂𝐹

∂𝑥
+ 𝑣

∂𝐹

∂𝑦
+ 𝑤

∂𝐹

∂𝑧
= 0  or  

𝐷𝐹

𝐷𝑡
= 0     (3.42)  

where  𝐷 = ∂/ ∂𝑡 + 𝑢(∂/ ∂𝑥) + 𝑣(∂/ ∂𝑦) + 𝑤(∂/ ∂𝑧𝑧) 

(3.42) presents the required condition in cartesian coordinates for 

𝐹(𝑥, 𝑦, 𝑧, 𝑡) = 0 to be a boundary surface.  

Remark 2. The normal velocity of the boundary 

  = 𝐮 ⋅ 𝐧 = 𝐮 ⋅
∇𝐅

|∇𝐹|
 

  =
−(∂𝐹/∂𝑡)

|(∂𝐹/∂𝑥)𝐢+(∂𝐹/∂𝑦)𝐣+(∂𝐹)𝐤|
, by  (3.37) and (3.40) 

  =
−(∂𝐹/∂𝑡)

√{(∂𝐹/∂𝑥)2+(∂𝐹/∂𝑦)2+(∂𝐹/∂𝑧)2}
       (3.43)  

  =
𝑢(∂𝐹/∂𝑥)+𝑣(∂𝐹/∂𝑦)+𝑤(∂𝐹/∂𝑧)

√{(∂𝐹/∂𝑥)2+(∂𝐹/∂𝑦)2+(∂𝐹/∂𝑧)2}
, using (3.42)    (3.44) 

 

3.6.2 EXAMPLES BASED ON EQUATION OF CONTINUITY 

Example 1. The particles of a fluid move symmetrically in space with 

regard to a fixed center; prove that the equation of continuity is 

∂𝜌

∂𝑡
+ 𝑢

∂𝜌

∂𝑟
+

𝜌

𝑟2

∂

∂𝑟
(𝑟2𝑢) = 0, where 𝑢 is the velocity at distance 𝑟 :  

Solution. Here we have spherical symmetry.  

∂𝜌

∂𝑡
+

1

𝑟2

∂

∂𝑟
(𝑟2𝜌𝑢) = 0  or  

∂𝜌

∂𝑡
+

1

𝑟2
{𝑟2𝑢

∂𝜌

∂𝑟
+ 𝜌

∂

∂𝑟
(𝑟2𝜌𝑢)} = 0 

or  
∂𝜌

∂𝑡
+ 𝑢

∂𝜌

∂𝑟
+

𝜌

𝑟2

∂

∂𝑟
(𝑟2𝜌𝑢) = 0. 
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Example 2. A mass of fluid moves in such a way that each particle describes 

a circle in one plane about a fixed axis; show that the equation of continuity 

is   ∂𝜌/ ∂𝑡 + ∂(𝜌𝜔)/ ∂𝜃 = 0,    where 𝜔 is the angular velocity of a particle 

whose azimuthal angle is 𝜃 at time 𝑡  

Solution. Here the motion is confined in a plane. Consider a fluid particle 

𝑃, whose polar coordinates are (𝑟, 𝜃). Let 𝑃 describe a circle of radius 𝑟. 

With 𝑃 as one comer, consider an element 𝑃𝑄𝑅𝑆 such that 𝑃𝑆 = 𝛿𝑟 and arc 

𝑃𝑄 = 𝑟𝛿𝜃. Here there is no motion of the fluid along 𝑃𝑆. The rate of the 

excess of the flow-in over the flow-out along 𝑃𝑄 

= −𝑟𝛿𝜃
∂

𝑟 ∂𝜃
(𝜌 ⋅ 𝑟𝜔 − 𝛿𝑟) 

Again, the total mass of the fluid within the element = 𝜌 ⋅ 𝛿𝑟 ⋅ 𝑟𝛿𝜃. 

The rate of increase in mass of the element =
∂

∂𝑡
(𝜌𝑟𝛿𝑟8𝜃)  

Hence the equation of continuity is given by 

∂

∂𝑟
(𝜌𝑟𝛿𝑟𝛿𝜃) = −𝑟𝛿𝜃

∂

𝑟 ∂𝜃
(𝜌𝑟𝜔𝛿𝑟)       or        𝑟𝛿𝑟𝛿𝜃

∂𝜌

∂𝑟
= −𝑟𝛿𝑟𝛿𝜃

∂

∂𝜃
(𝜌𝜔) 

or   ∂𝜌/ ∂𝑡 + ∂(𝜌𝜔)/ ∂𝜃 = 0, 

Example 3. Show that the surface 
𝑥2

𝑎2𝑘2𝑡4 + 𝑘𝑡2 (
𝑦2

𝑏2 +
𝑧2

𝑐2) = 1 is a possible 

form of boundary surface of a liquid at time 𝑡.  

Solution. The given surface 

𝐹(𝑥, 𝑦, 𝑧, 𝑡) =
𝑥2

𝑎2𝑘2𝑡4 + 𝑘𝑡2 (
𝑦2

𝑏2 +
𝑧2

𝑐2) − 1 = 0   (3.45) 

an be a possible boundary surface of a liquid, if it satisfies the boundary 

condition 

∂𝐹/ ∂𝑡 + 𝑢(∂𝐹/ ∂𝑥) + 𝑣(∂𝐹/ ∂𝑦) + 𝑤(∂𝐹/ ∂𝑧) = 0   (3.46) 

the same values of 𝑢, 𝑣, 𝑤 satisfy the equation of continuity 

∂𝑢/ ∂𝑥 + ∂𝑣/ ∂𝑦 + ∂𝑤/ ∂𝑧 = 0       (3.47) 

From (3.45)  

∂𝐹

∂𝑡
= −

4𝑥2

𝑎2𝑘2𝑡5
+ 2𝑘𝑡 (

𝑦2

𝑏2
+

𝑧2

𝑐2
) ,

∂𝐹

∂𝑥
=

2𝑥

𝑎2𝑘2𝑡4
,

∂𝐹

∂𝑦
=

2𝑘𝑡2𝑦

𝑏2
,

∂𝐹

∂𝑧
=

2𝑘𝑡2𝑧

𝑐2
  

With these values, (3.46) reduces to 
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−
4𝑥2

𝑎2𝑘2𝑡5
+ 2𝑘𝑡 (

𝑦2

𝑏2
+

𝑧2

𝑐2
) +

2𝑥𝑢

𝑎2𝑘2𝑡4
+

2𝑘𝑡2𝑦𝑣

𝑏2
+

2𝑘𝑡2𝑧𝑤

𝑐2
= 0,

2𝑥

𝑎2𝑘2𝑡4
(𝑢 −

2𝑥

𝑡
) +

2𝑘𝑦𝑡

𝑏2
(𝑦 + 𝑣𝑡) +

2𝑘𝑡𝑧

𝑐2
(𝑧 + 𝑤𝑡) = 0,

 

which is identically satisfied if we take 

𝑢 = 2𝑥/𝑡,  𝑣 = −𝑦/𝑡 𝑤 = −𝑧/𝑡    (3.48) 

From (3.48)   
∂𝑢

∂𝑥
=

2

𝑡
  

∂𝑣

∂𝑦
= −

1

𝑡
 

∂𝑤

∂𝑧
= −

1

𝑡
   (3.49) 

Using (3.49), we find that (3.47) is also satisfied by the above values 

of 𝑢, 𝑣 and 𝑤. Hence (3.45) is possible boundary surface with velocity 

components given by (3.48).  

Example 4. If the velocity distribution is 𝐪 = 𝐢𝐴𝑥2𝑦 + 𝐣𝐵𝑦2𝑧𝑡 + 𝐤𝐶𝑧𝑡2, 

where 𝐴, 𝐵, 𝐶, are constants, then find the the acceleration and velocity 

components.  

Solution. The acceleration 𝒂 = 𝑎𝑥𝐢 + 𝑎𝑦𝐣 + 𝑎𝑧𝐤 is given by 

𝒂 =
∂𝐪

∂𝑡
+ 𝑢

∂𝐪

∂𝑥
+ 𝑣

∂𝐪

∂𝑦
+ 𝑤

∂𝐪

∂𝑧
                            (3.50) 

Also 𝐪 = 𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤 = 𝐢𝐴𝑥2𝑦 + 𝐣𝐵𝑦2𝑧𝑡 + 𝐤𝐶𝑧𝑡2    (3.51) 

Hence,  𝑢 = 𝐴𝑥2𝑦,  𝑣 = 𝐵𝑦2𝑧𝑡,  𝑤 = 𝐶𝑧𝑡2     (3.52) 

Using (3.51) and (3.52), (3.50) reduces to 

𝒂 = 𝐵𝑦2𝑧𝐣 + 2𝐶𝑧𝑡𝐤 + 𝐴𝑥2𝑦 × (2 A𝑥𝑦𝐢) + B𝑦2𝑧𝑡(𝐴𝑥2𝐢 + 2𝐵𝑦𝑧𝑡𝐣)

+ 𝐶𝑧𝑡2(𝐵𝑦2𝑡𝐣 + 𝐶𝑡2𝐤) 

= 𝐴(2𝐴𝑥3𝑦2 + 𝐵𝑥2𝑦2𝑧𝑡)𝐢 + 𝐵(𝑦2𝑧 + 2𝐵𝑦3𝑧2𝑡2 + 𝐶𝑦2𝑧𝑡3)𝐣 + 𝐶(2𝑧𝑡 + 𝐶𝑧𝑡4)𝐤 

The components of the acceleration ( 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 ) are given by 

𝑎𝑥 = 𝐴(2𝐴𝑥3𝑦2 + 𝐵𝑥2𝑦2𝑧𝑡),  𝑎𝑦 = 𝐵(𝑦2𝑧 + 2𝐵𝑦3𝑧2𝑡2 + 𝐶𝑦2𝑧𝑡3),  𝑎𝑧

= 𝐶(2𝑧𝑡 + 𝐶𝑧𝑡4) 

Example 5. Determine the acceleration at the point (2,1,3) at 𝑡 = 0.5 sec, 

if 𝑢 = 𝑦𝑧 + 𝑡, 𝑣 = 𝑥𝑧 − 𝑡 and 𝑤 = 𝑥𝑦.  

Solution. Velocity field 𝐪 at the point (𝑥, 𝑦, 𝑧) is given by 

     𝐪 = 𝒖𝐢 + 𝑣𝐣 + 𝑤𝐤 = (𝑦𝑧 + 𝑡)𝐢 + (𝑥𝑧 − 𝑡)𝐣 + 𝑥𝑦𝐤.   (3.52) 

The acceleration 𝒂 = 𝑎𝑥𝐢 + 𝑎𝑦𝐣 + 𝑎𝑧𝐤 is given by 
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𝒂 = ∂𝒒/ ∂𝑡 + 𝑢(∂𝒒/ ∂𝑡) + 𝑣(∂𝒒/ ∂𝑡) + 𝑤(∂𝒒/ ∂𝑡) 

= (𝐢 − 𝐣) + (𝑦𝑧 + 𝑡)(𝑧𝐣 + 𝑦𝐤) + (𝑥𝑧 − 𝑡)(𝑧𝐢 + 𝑥𝐤) + 𝑥𝑦(𝑦𝐢 + 𝑥𝐣) 

= (1 + 𝑥𝑧2 + 𝑥𝑦2 − 𝑡𝑧)𝐢 + (−1 + 𝑦𝑧2 + 𝑥2𝑧 + 𝑧𝑡)𝐣 + (𝑦2𝑧 + 𝑥2𝑧 + 𝑦𝑡 − 𝑥𝑡)𝐤 

∴ Acceleration at (2,1,3) at 𝑡 = 0.5 is given by  𝒂 = 19.5𝐢 + 13.5𝐣 + 6.5𝐤 

Hence the components 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 of acceleration are given by 

𝑎𝑥 = 19.5,              𝑎𝑦 = 13.5          and            𝑎𝑧 = 6.5 

 

3.7 SUMMARY 

 

 This unit explains the following topics: 

(i) Description of equation of continuity 

(ii) Derivation of the equation of continuity in different coordinates 

(iii) Definition of local and particle rates of change 

(iv) Concept of acceleration of a fluid 

(v) Explanation of Boundary condition 

 

3.8 GLOSSARY 

 

(i) Fluid 

(ii) Velocity 

(iii) Equation of continuity 

(iv) Acceleration 

(v) Rigid Boundary 
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3.10 TERMINAL QUESTIONS 

 

 1. What is a local and particle rates of changes? 

 2.  Define the equation of continuity? 

3. Derive the equation of continuity in spherical polar 

coordinates. 

 4. Derive the equation of continuity in cylindrical coordinates. 

5. What is boundary condition? Derive the condition at 

boundary surface. 

6. Given the eulerian velocity vector field 

 𝑉 = 𝐢3t + 𝐣𝑥𝑧 + 𝐤𝑡𝑦2 

find the total acceleration of a particle. 

 Sol. 
dV

dt
= 𝐢3 + 𝐣(3𝑡𝑧 + 𝑡𝑥𝑦2) + 𝐤(𝑦2 + 2𝑡𝑥𝑦𝑧) 

7. Determine the acceleration of a fluid particle from the 

following flow field: 

𝐪 = 𝐢(𝐴𝑥𝑦2𝑡) + 𝐣(𝐵𝑥2𝑦𝑡) + 𝐤(𝐶𝑥𝑦𝑧).  

Sol. 𝑎𝑥 = 𝐴(𝑥𝑦2 + 𝐴𝑥𝑦4𝑡 + 2𝐵𝑥3𝑦2𝑡2), 

 𝑎𝑦 = 𝐵(𝑥2𝑦 + 2𝐴𝑥2𝑦3𝑡 + 𝐵𝑥4𝑦𝑡2), 

 𝑎𝑧 = 𝐶(𝐴𝑥𝑦3𝑧 + 𝐵𝑥3𝑦𝑧𝑡 + 𝑥2𝑦2𝑧)   
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4.1 INTRODUCTION 

In this chapter, we will examine a significant category of problems 

where the fluid is either stationary or moving without any relative 

motion between adjacent particles. In both cases, there will be no 

shearing stresses in the fluid, and the only forces acting on the surfaces 

of the particles will be due to pressure. Therefore, our main focus is on 

studying pressure and its variation throughout a fluid. The absence of 

shearing stresses simplifies the analysis considerably, enabling us to 

achieve relatively straightforward solutions to many important practical 

problems. 

 

4.2 OBJECTIVES 

Upon reading this unit learner will be able to: 

(i)    Understand how pressure varies in a stationary fluid. 

(ii)    Evaluate the movement of fluids in containers subjected to  

   linear acceleration or rotation. 

 

 

4.3 FLUID PRESSURE AT A POINT  

Imagine a small area dA within a large mass of fluid. When the fluid is 

at rest, the force exerted by the surrounding fluid on this area dA will 

always be perpendicular to the surface of dA. Pressure is the normal 

force that a fluid applies per unit area, denoted as p. Thus, 

mathematically, the pressure at a point in a stationary fluid is defined as 

𝑝 =
𝑑𝐹

𝑑𝐴
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If the force (F) is evenly distributed across the area (A), the pressure at 

any point is defined as 

𝑝 =
𝐹

𝐴
=

𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
 

Therefore, force or pressure force 𝐹 = 𝑝 × 𝐴. 

Pressure is measured in various units, including: 

(i) In the MKS system: kgf/m² and kgf/cm².  

(ii) In the SI system: Newton/m² (N/m²) and Newton/mm² 

(N/mm²). N/m² is also referred to as Pascal (Pa). 

Other frequently used units of pressure include: 

𝑘𝑃𝑎 = 𝑘𝑖𝑙𝑜 𝑝𝑎𝑠𝑐𝑎𝑙 = 1000 𝐾/𝑚2. 

𝑏𝑎𝑟 = 100 𝑘𝑃𝑎 = 105𝐾/𝑚2. 

 

4.4 PASCAL’S LAW 

Pascal’s law states that the pressure or intensity of pressure at a point in 

a static fluid is the same in all directions. This can be demonstrated as 

follows: 

Consider a small wedge-shaped fluid element within a stationary fluid 

mass, as shown in Figure 4.1. Let the width of the element perpendicular 

to the plane of the paper be unity, with 

𝑝𝑥 , 𝑝𝑦 , and 𝑝𝑧 representing the 

pressure or intensity of pressure acting 

on the faces AB, AC, and BC, 

respectively. Let ∠𝐴𝐵𝐶 = 𝜃. The 

forces acting on the element include: 

(i) Pressure forces normal 

to the surfaces. 

Figure 4.1: Forces on a fluid 

element. 
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(ii) Weight of element acting in the vertical direction. 

The forces acting on the faces are: 

Force on the face 𝐴𝐵 = 𝑝𝑥 × Area of face 𝐴𝐵 

           = 𝑝𝑥 ×  𝑑𝑦 ×  1. 

In a similar manner, the force on the face 𝐴𝐶 = 𝑝𝑦 ×  𝑑𝑥 ×  1. 

In a similar manner, the force on the face 𝐵𝐶 = 𝑝𝑧 ×  𝑑𝑠 ×  1. 

Weight of element = (Mass of element)× 𝑔 

       = (Volume× 𝜌)× 𝑔 = (
𝐴𝐵×𝐴𝐶

2
× 1) × 𝜌 × 𝑔, 

where 𝜌 is the density of fluid. 

Resolving  the forces in 𝑥-direction, we obtain 

(𝑝𝑥 ×  𝑑𝑦 ×  1) − (𝑝𝑧 × 𝑑𝑠 × 1)𝑠𝑖𝑛(90° − 𝜃) = 0 

 or   

(𝑝𝑥 ×  𝑑𝑦 ×  1) − (𝑝𝑧 × 𝑑𝑠 × 1)𝑐𝑜𝑠 𝜃 = 0. 

But from Figure 4.1, 𝑑𝑠 𝑐𝑜𝑠 𝜃 = 𝐴𝐵 = 𝑑𝑦, therefore 

(𝑝𝑥 ×  𝑑𝑦 ×  1) − 𝑝𝑧 𝑑𝑦 = 0, 

 or 

 𝑝𝑥 = 𝑝𝑧 .               (4.1) 

In a similar manner, resolving  the forces in 𝑦-direction, we obtain 

(𝑝𝑦 ×  𝑑𝑥 ×  1) − (𝑝𝑧 × 𝑑𝑠 × 1)𝑐𝑜𝑠(90° − 𝜃) − (
𝑑𝑥 × 𝑑𝑦

2
× 1) × 𝜌

× 𝑔 = 0 

 or   

(𝑝𝑦 ×  𝑑𝑥) − (𝑝𝑧 × 𝑑𝑠 × 𝑠𝑖𝑛 𝜃) − (
𝑑𝑥𝑑𝑦

2
× 𝜌 × 𝑔) = 0. 

But 𝑑𝑠 𝑠𝑖𝑛 𝜃 = 𝑑𝑥. Since the element is very small, its weight can be 

considered negligible, so 
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𝑝𝑦𝑑𝑥 − 𝑝𝑧𝑑𝑥 = 0, 

i.e.    𝑝𝑦 = 𝑝𝑧.                        (4.2) 

From equation (4.1) and (4.2), we get 

𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧 . 

This demonstrates that the pressure at any point is equal in the x, y, and 

z directions. Because the selection of the fluid element was arbitrary, it 

implies that the pressure at any point is uniform in all directions. 

 

4.5 PRESSURE VARIATION IN A FLUID AT 

REST 

The pressure at any point in a stationary 

fluid is determined by the hydrostatic law, 

which states that the rate of pressure 

increase in the downward vertical direction 

is equal to the specific weight of the fluid 

at that point. This can be demonstrated as 

follows: 

Let's examine a small fluid element given 

in Figure 4.2. 

Let Δ𝐴 = Cross-sectional area of element 

Δ𝑍 = Height of fluid element 

𝑝 = Pressure on face 𝐴𝐵 

𝑍 = Distance of fluid element from free surface. 

The forces acting on the fluid element are as follows: 

1. The pressure force on face 𝐴𝐵 is 𝑝 × Δ𝐴, acting downward, 

perpendicular to face 𝐴𝐵. 

2. The pressure force on face 𝐶𝐷 is (𝑝 +
∂𝑝

∂𝑍
Δ𝑍) × Δ𝐴, acting 

upward, perpendicular to face 𝐶𝐷. 

3. The weight of fluid element is 𝜌 × 𝑔 × (Δ𝐴 × Δ𝑍). 

Figure 4.2: Forces on a 

fluid element. 
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4. The pressure forces on surfaces 𝐵𝐶 and 𝐴𝐷 are equal and 

opposite. For the equilibrium of the fluid element, we have 

𝑝Δ𝐴 − (𝑝 +
∂𝑝

∂𝑍
Δ𝑍) Δ𝐴 + 𝜌 × 𝑔 × (Δ𝐴 × Δ𝑍) = 0 

or 

𝑝Δ𝐴 − 𝑝Δ𝐴 −
∂𝑝

∂𝑍
Δ𝑍Δ𝐴 + 𝜌 × 𝑔 × Δ𝐴 × 𝑍 = 0 

or 

−
∂𝑝

∂𝑍
Δ𝑍Δ𝐴 + 𝜌 × 𝑔 × Δ𝐴Δ𝑍 = 0 

or 

∂𝑝

∂𝑍
Δ𝑍Δ𝐴 = 𝜌 × 𝑔 × Δ𝐴Δ𝑍  or    

∂𝑝

∂𝑍
=  𝜌 × 𝑔 

Therefore, 
∂𝑝

∂𝑍
= 𝜌 × 𝑔 = 𝑤      [Since, 𝜌 × 𝑔 = 𝑤]            (4.3) 

where 𝑤 is the weight density of fluid. 

Equation (4.3) indicates that the rate of pressure increase vertically 

equals the density of the fluid multiplied by gravitational acceleration. 

This principle is known as the Hydrostatic Law. 

By integrating equation (4.3) for liquids, we obtain 

∫ 𝑑𝑝 = ∫ 𝜌𝑔𝑍 

𝑝 = 𝜌𝑔𝑍.                (4.4) 

where 𝑝 represents the pressure relative to atmospheric pressure, and 𝑍 

denotes the height of the point from free surfaces. 

From equation (4.4), we obtain 𝑍 =
𝑝

𝜌×𝑔
             (4.5) 

Here 𝑍 is referred to as the Pressure Head. 

 

Problem 4.5.1 A hydraulic press has a ram with a diameter of 20 𝑐𝑚 

and a plunger with a diameter of 3.5 𝑐𝑚. Determine the weight lifted by 

the hydraulic press when a force of 500 N is applied to the plunger. 

Solution.  Diameter of ram,  𝐷 = 20𝑐𝑚 = 0.2𝑚 
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Diameter of plunger,   𝑑 = 3.5𝑐𝑚 = 0.035𝑚 

Force on plunger,   𝐹 = 500 N 

We have to find weight lifted, i.e., W. 

Area of ram, 

𝐴 =
𝜋

4
𝐷2 =

𝜋

4
(0.2)2 = 0.03142 m2 

Area of plunger. 

𝑎 =
𝜋

4
𝑑2 =

𝜋

4
(0.035)2 = .00096 m2. 

Pressure intensity due to plunger 

=
 Force on plunger 

 Area of plunger 
=

𝐹

𝑎
=

500

. 00096
 N/m2.  

According to Pascal's law, the pressure intensity will be uniformly 

transmitted in all directions. Therefore, the pressure intensity at the ram 

=
500

.00096
= 520833.33 𝑁/m2. 

𝐴𝑙𝑠𝑜, 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑟𝑎𝑚 =
 Weight 

 Area of ram 
=

𝑊

𝐴
=

𝑊

.03142
 N/

m2, 

  i.e., 
𝑊

.03142
= 520833.33 

∴  Weight  = 520833.33 × .03142 = 16364.58 N

= 𝟏𝟔. 𝟑𝟔𝟒𝟓𝟖 𝐤𝐍.  

 

Problem 4.5.2 A hydraulic press has a ram with a diameter of 30 cm 

and a plunger with a diameter of 2 cm. It is used to lift a weight of 30kN. 

Determine the force required at the plunger. 

Solution. Diameter of ram,   𝐷 = 30𝑐𝑚 = 0.3𝑚 

∴ Area of ram,   𝐴 =
𝜋

4
𝐷2 =

𝜋

4
(0.3)2 = 0.07068 𝑚2 

Diameter of plunger,  𝑑 = 2𝑐𝑚 = 0.02𝑚 

∴ Area of plunger,   𝑎 =
𝜋

4
𝑑2 =

𝜋

4
(0.02)2 = 3.142 × 10−4𝑚2 

Weight lifted,   𝑊 = 30𝑘𝑁 = 30 × 1000 𝑁 = 30000 𝑁. 

Pressure intensity developed due to plunger =
 Force 

 Area 
=

𝐹

𝑎
. 

       Figure 4.3 
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According to Pascal's law, the pressure intensity will be uniformly 

transmitted in all directions. Therefore, the pressure transmitted at the 

ram =
𝐹

𝑎
 

𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑟𝑎𝑚 =  Pressure intensity ×  Area of ram 

=
𝐹

𝑎
× 𝐴 =

𝐹 × .07068

3.142 × 10−4
 N 

 But force acting on ram =  Weight lifted = 30000 N 

30000 =  
𝐹 × .07068

3.142 × 10−4
 

𝐹 =
30000 × 3.142 × 10−4

. 07068
= 𝟏𝟑𝟑. 𝟑𝟔 𝐍. 

Problem 4.5.3 Calculate the pressure exerted by a liquid column with 

a height of 0.4 m for the following liquids:  

(a) Water,   (b) Oil with a specific gravity of 0.9,   (c) Mercury with a 

specific gravity of 13.6. 

Assume the density of water, 𝜌 = 1000 𝑘𝑔/m3. 

Solution. Height of liquid column, 

𝑍 = 0.4 m.  

The pressure at any point in a liquid is determined by equation (4.5) as 

follows 

𝑝 = 𝜌𝑔𝑍 

ρ = 1000 kg/m3 

𝑝 = 𝜌𝑔𝑍 = 1000 × 9.81 × 0.4 = 3924 N/m2 

=
3924

104
 N/cm2 = 𝟎. 𝟑𝟗𝟐𝟒 N/cm2. 

(b) For oil of specific gravity 0.9 , 

We know that the density of a fluid is the product of its specific gravity 

and the density of water. 

∴ Density of oil,  

𝜌0 =  Sp. gr. of oil ×  Density of water  

= 0.9 × 𝜌 = 0.9 × 1000 = 900 𝑘𝑔/m3 
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Now pressure,     𝑝 = 𝜌0 × 𝑔 × 𝑍 

= 900 × 9.81 × 0.4 = 3531.6 
N

m2
=

3531.6

104

N

cm2
. 

= 𝟎. 𝟑𝟓𝟑𝟏𝟔
𝐍

 𝐜𝐦𝟐
. 

(c) For mercury, specific gravity = 13.6 

Again, We know that the density of a fluid is the product of its specific 

gravity and the density of water. 

∴ Density of mercury, 

𝜌𝑠 =  Specific gravity of mercury ×  Density of water  

 = 13.6 × 1000 = 13600 kg/m3 

    Therefore, 𝑝 = 𝜌𝑠 × 𝑔 × 𝑍 

                         = 13600 × 9.81 × 0.4 = 53366.4 
N

m2 

                         =
53366.4

104 = 𝟓. 𝟑𝟒
𝐍

𝐜𝐦𝟐. 

 

Problem 4.5.4 The pressure intensity at a point in a fluid is 

4.924 N/cm2. Determine the corresponding height of the fluid when the 

fluid is:  

(a) water, and (b) oil of specific gravity 0.7. 

Solution. Pressure intensity, 

𝑝 = 4.924
N

cm2
= 4.924 × 104

N

m2
. 

The corresponding height, Z, of the fluid is determined using equation 

(4.5) as follows:                                                 

     Z =
𝑝

𝜌 × 𝑔
 

(a) For water,   𝜌 = 1000 kg/m3 

Therefore, Z=
𝑝

𝜌×𝑔
=

4.924×104

1000×9.81
= 5.02 m of water. 

(b) For oil, specific gravity = 0.7 

Density of oil   𝜌0 = 0.7 × 1000 = 700 kg/m3 

Therefore, 𝑍 =
𝑝

𝜌0×𝑔
=

4.924×104

700×9.81
= 7.17 m of oil.  
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Problem 4.5.5 An oil with a specific gravity of 0.7 is contained in a 

vessel. At a certain point, the height of the oil is 50 m. Determine the 

corresponding height of water at that point. 

Solution.  Specific gravity of oil,   𝑆0 = 0.7 

Height of oil,   𝑍0 = 50 𝑚 

Density of oil,  𝜌0 = Specific gravity of oil × Density of water  

= 0.7 × 1000 = 700 kg/m3 

Intensity of pressure,    𝑝 = 𝜌0 × 𝑔 × 𝑍0 = 700 × 9.81 × 50
N

m2 

Corresponding height of water =
𝑝

 Density of water × 𝑔
 

=
700 × 9.81 × 50

1000 × 9.81
= 0.7 × 50 = 𝟑𝟓 𝐦 of water. 

 

4.6 ABSOLUTE, GAUGE AND VACUUM 

PRESSURES 

Fluid pressure is typically measured using two systems: one measures 

pressure relative to absolute zero or complete vacuum, known as 

absolute pressure, while the other measures pressure relative to 

atmospheric pressure, known as gauge pressure. Therefore: 

1. Absolute pressure is the pressure measured relative to absolute 

vacuum pressure. 

2. Gauge pressure is the pressure measured using a pressure 

measuring instrument where atmospheric pressure is taken as the 

reference point, marked as zero on the scale. 

3. Vacuum pressure is the pressure measured below atmospheric 

pressure. 

 Figure 4.4 illustrates the 

relationship between absolute 

pressure, gauge pressure, and 

vacuum pressure. 

Mathematically we can write, 
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(i) Absolute pressure = Atmospheric pressure + Gauge pressure 

or  𝑝ab = 𝑝atm +

𝑝gauge 

(ii) Vacuum pressure = Atmospheric pressure − Absolute  

pressure. 

 

Problem 4.6.1 What are the gauge pressure and absolute pressure at a 

point 5 m below the free surface of a liquid with a density of 1.63 ×

103 kg/m3, given that the atmospheric pressure equals 750 mm of 

mercury? The specific gravity of mercury is 13.6 and the density of 

water is 1000 kg/m3. 

Solution.  Depth of liquid,   𝑍1 = 5 𝑚. 

Density of liquid,  𝜌1 = 1.63 × 103 kg/m3. 

Atmospheric pressure head,    𝑍0 = 750 mm of Hg. 

     =
750

1000
= 0.75 m of Hg 

Therefore, atmospheric pressure,   𝑝atm = 𝜌0 × 𝑔 × 𝑍0,  

where 𝜌0 = Density of Hg = Special gravity of mercury × Density of 

water = 13.6 × 1000 kg/m3 

and 𝑍0 = Pressure head in terms of mercury.  

∴  𝑝atm = (13.6 × 1000) × 9.81 × 0.75 N/m2 (∵ 𝑍0 = 0.75) 

= 100062 N/m2 

The pressure at a point located 5 m below the free surface of the liquid 

is expressed as 

𝑝 = 𝜌1 × 𝑔 × 𝑍1 

                             = (1.63 × 1000) × 9.81 × 5 = 79951.5 N/m2. 

Therefore, Gauge pressure,   𝑝 = 𝟕𝟗𝟗𝟓𝟏. 𝟓 𝐍/𝐦𝟐. 

Now absolute pressure =  Gauge pressure +  Atmospheric pressure  

     = 79951.5 + 100062 = 𝟏𝟖𝟎𝟎𝟏𝟑. 𝟓 𝐍/𝐦𝟐. 

 

 

 

 

Figure 4.4: Relationship between 

pressures. 
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4.7 FLUIDS UNDER RIGID BODY MOTION 

In certain cases of fluid flow, the characteristics of fluids in motion can 

be understood through principles of hydrostatics. Fluids in such motion 

are considered to be in a state of relative equilibrium or relative rest. 

This occurs when a fluid flows with a constant velocity without 

acceleration, or with uniform acceleration. 

 

4.7.1 STATIC FLUID SUBJECT TO UNIFORM 

ACCELERATION 

When a fluid moves uniformly in a straight line without acceleration, 

there are no shear forces or inertia forces acting on the fluid particles, 

which continue their motion due to inertia alone. Each fluid particle's 

weight is balanced by pressure forces, akin to a stationary fluid mass, 

allowing the application of hydrostatic equations without modification. 

If the entire fluid undergoes uniform acceleration in a straight line 

without relative movement between layers, there are still no shear 

forces, but an additional force acts to cause acceleration. However, with 

appropriate adjustment for this additional force, the system can be 

analyzed using hydrostatic methods. Consider a rectangular fluid 

element in a three-dimensional Cartesian coordinate system, as 

illustrated in Figure 4.5. The pressure at the center of the element is p. 

The fluid element moves with constant acceleration, with components 

𝑎𝑥, 𝑎𝑦 and 𝑎𝑧  along the coordinate axes x, y, and z, respectively. The 

force acting on the fluid element in the x-direction is 
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Figure 4.5: Equilibrium of fluid element moving with constant 

acceleration. 

[(𝑝 −
∂𝑝

∂𝑥

1

2
 d𝑥) − (𝑝 +

∂𝑝

∂𝑥

1

2
 d𝑥)] d𝑦 d𝑧 

=
∂𝑝

∂𝑥
𝑑𝑥𝑑𝑦 d𝑧 

Therefore the equation of motion in the 𝑥 direction can be written as 

𝜌d𝑥 d𝑦 d𝑧𝑎𝑥 = −
∂𝑝

∂𝑥
 d𝑥 d𝑦 d𝑧 

or 

∂𝑝

∂𝑥
= −𝜌𝑎𝑥               (4.6) 

where 𝜌 is the density of the fluid. In a similar fashion, the equation of 

motion in the 𝑦 direction can be written as 

∂𝑝

∂𝑦
= −𝜌𝑎𝑦               (4.7) 

The total force on the fluid element in the z direction is the result of the 

difference between the pressure force and the weight. Thus, the equation 

of motion in the z direction can be expressed as 

(−
∂𝑝

∂𝑧
− 𝜌𝑔) d𝑥 d𝑦 d𝑧 = 𝜌𝑎𝑧 d𝑥 d𝑦 d𝑧 

or 

∂𝑝

∂𝑧
= −𝜌(𝑔 + 𝑎𝑧)            (4.8)  

It is noted that the governing equations for pressure distribution (Eqs 

(4.6), (4.7), and (4.8)) resemble those seen in hydrostatic pressure 

equations. In a simplified two-dimensional scenario where the y 
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component of acceleration, 𝑎𝑦, is zero, a surface of constant pressure in 

the fluid will be defined by 

d𝑝 =
∂𝑝

∂𝑥
 d𝑥 +

∂𝑝

∂𝑧
 d𝑧 = 0

d𝑧

 d𝑥
 = −

∂𝑝
∂𝑥
∂𝑝
∂𝑧

= −
𝑎𝑥

𝑔 + 𝑎𝑧

 

Given that 𝑎𝑥 and 𝑎𝑧 are constants, a surface of constant pressure 

exhibits a uniform slope. One such surface is a free surface, where 

 𝑝 = 𝑝atm . Other planes of constant pressure are parallel to it. 

 

4.7.1.1. ACCELERATION IN HORIZONTAL DIRECTION 

For 𝑎𝑧 = 0, we have 

𝑑𝑧

𝑑𝑥
= −

𝑎𝑥

𝑔
 

The negative sign indicates that the surface slopes downward when 𝑎𝑥 >

0, indicating that the container is accelerating. Conversely, if 𝑎𝑥 < 0, 

indicating deceleration, the surfaces will have a positive slope. These 

two scenarios are illustrated in Figure 4.6. 

If 𝜃 is the angle made by the free surface with horizontal. Then 

tan 𝜃 =
𝑎𝑥

𝑔
 

 

Figure 4.6: Free surface during horizontal acceleration. 
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4.7.1.2. ACCELERATION IN VERTICAL DIRECTION 

For 𝑎𝑥 = 0 we have 
𝑑𝑧

𝑑𝑥
= 0, and the surfaces of constant pressure are 

horizontal. The pressure gradient, 

𝑑𝑝

𝑑𝑧
= −𝛾 (1 +

𝑎𝑧

𝑔
), 

where the negative sign indicates pressure decreases with increasing z. 

If distance h is measured vertically downwards from the free surface, 

then 

𝑑𝑝

𝑑ℎ
= 𝛾 (1 +

𝑎𝑧

𝑔
) 

Upon integration, we have 

𝑝 = 𝛾 (1 +
𝑎𝑧

𝑔
) ℎ + 𝐶 

At the free surface, ℎ = 0, 𝑝 = 0. Therefore, 𝐶 = 0. Thus 

𝑝 = 𝛾 (1 +
𝑎𝑧

𝑔
) ℎ 

If 𝑎𝑧 > 0, then (𝑝 − 𝑝hyd ) =
𝛾𝑎𝑧ℎ

𝑔
 

If 𝑎𝑧 < 0, then (p − 𝑝hyd ) =

−
𝛾𝑎𝑧ℎ

𝑔
 

If 𝑎𝑧 = −𝑔 (representing freely 

falling fluid), then 𝑝 = 0 

(indicating atmospheric pressure). 

These observations are depicted 

graphically in Figure 4.7. 

 

 

Figure 4.7: Pressure 

variation in the fluid subject 

to verticle accelaration. 
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Example 4.7.1 A closed container filled with water to a depth of 3 m is 

moving vertically downward with an acceleration of 4 m/s2. Determine 

the pressure at the bottom of the container. 

Solution. 

Given: ℎ = 3 m, 𝑎𝑧 = −4 m/s2 

𝑝 = 𝛾 (1 +
𝑎𝑧

𝑔
) ℎ 

= 9810 (1 −
4

9.81
) × 3 

= 17430 N/m2 

Example 4.7.2 An oil tanker with a cross-section of 2.4 m × 2.4 m and 

a length of 4 m is filled with oil to a depth of 1.5 m. It moves with 

uniform acceleration, causing the front bottom corner to be exposed. 

Calculate the total horizontal force acting on the sides of the tanker. 

Assume the specific gravity of the oil is 0.85. 

Solution. Volume of oil inside the 

tanker, 𝑉 = 2.4 × 1.5 × 4 = 14.4 m3 

Volume of empty space inside the tanker 

= 0.9 × 2.4 × 4 = 8.64 m3 

tan 𝜃 =
𝐴𝐵

𝐵𝐹
=

2.4

𝑥
 

Volume of empty space

=
1

2
× 𝐴𝐵 × 𝐵𝐹 × 2.4 

=
1

2
× 2.4 × 𝑥 × 2.4 = 2.88𝑥 

2.88𝑥 = 8.64 

𝑥 = 3 m 

tan 𝜃 =
𝑎𝑥

𝑔
=

2.4

𝑥
 

𝑎𝑥 =
2.4

3
× 9.81 = 7.848 m/s2 

△ 𝐴𝐸𝐷 and △ 𝐹𝐸𝐶 are similar. Therefore, 

Figure 4.8 
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𝐴𝐷

𝐷𝐸
 =

𝐶𝐹

𝐶𝐸
4

2.4 + 𝑦
 =

4 − 3

𝑦
4𝑦 = 1(2.4 + 𝑦)
3𝑦 = 2.4

𝑦 = 0.8 m

 

Hydrostatic force on side 𝐶𝐷 = 𝛾ℎ𝑐𝐴 = 0.85 × 9810 × (0.8 +
2.4

1.5
) ×

2.4 × 2.4 = 115271.42 N. 

 

Example 4.7.3 In an open rectangular tank measuring 5 m in length and 

2.5 m in width, water is filled to a depth of 1.5 m. Determine the slope 

of the water surface when the tank accelerates upward at 3 m/s2 along 

an inclined plane of 45∘. 

Solution. 

Given that  𝛼 = 30∘, a = 3 m/s2 

 

Let 𝑃 = Pressure force acting normal to the water surface. 

Then 

𝑃sin 𝜃 = 𝑚 ⋅ 𝑎𝑥 

𝑃cos 𝜃 = 𝑚 ⋅ 𝑎𝑧 + 𝑚𝑔 

tan 𝜃 =
𝑎𝑥

𝑎𝑧 + 𝑔
=

𝑎cos 𝛼

𝑎sin 𝛼 + 𝑔
 

=
3cos 45∘

3sin 45∘ + 9.81
= 0.1778 

𝜃 = 10.08∘. 

 

Figure 4.9 
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4.8 SUMMARY 

In this unit we studied: 

(i) The definition of fluid pressure at a point. 

(ii) Pascal’s law. 

(iii) Pressure variation in a fluid at rest. 

(iv)  The difference between absolute, gauge and vaccum pressure. 

(v)  Pressure in a fluid under uniform acceleration in horizontal and 

vertical direction. 

 

4.9 GLOSSARY 

(i) Fluid pressure 

(ii) Pascal’s law 

(iii) Hydrostatic Law 

(iv) Pressure head 

(v) Absolute pressure 

(vi) Gauge pressure 

(vii) Vaccum pressure 
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(v) F.M. White & H. Xue (2022), Fluid Mechanics, McGraw 

Hill; Standard Edition. 

(vi) S.K. Som, G. Biswas, S. Chakraborty (2017), 

Introduction to Fluid Mechanics and Fluid Machines, 
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4.11 TERMINAL QUESTIONS 

 

1. State and prove Pascal’s law. 

2. Explain hydrostatic law. 

3. Differentiate between absolute pressure, gauge pressure and 

vaccum pressure. 

4. An open tank contains water upto a depth of 2m and above it 

an oil of specific gravity 0.9 for a depth of 1m. Find the 

pressure intensity (i) at the interface of the two liquids (ii) at 

the bottom of the tank.  

            [Ans.(i)0.8829N/cm2 (ii)2.8449 N/cm2] 

5. A hydraulic press has a plunger of diameter 4 cm and a ram 

of diameter 20cm. It is used for lifting a weight of 20kN. Find 

the force required at the plunger.            [Ans. 800N] 

6. Determine the absolute and gauge pressure at a point that is 

2 m below the free surface of water. Take atmospheric 

pressure as 10.1043 N/cm2.      

              [Ans. 1.962 N/cm2 (gauge), 12.066 N/cm2(abs.)] 
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 UNIT 5: IMMISCIBLE FLUIDS 

 

CONTENTS:  

 

5.1  Introduction 

5.2      Objectives 

5.3      Immiscible fluids  

5.4  Flow of two immiscible viscous fluids between two parallel plates 

5.5      Summary 

5.6 Glossary 

5.7       References and suggested readings 

5.8  Terminal questions 

5.9 Answers 
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5.1 INTRODUCTION 

Immiscible liquids are liquids that don't mix with each other to form a single phase or 

homogeneous mixture. Instead, they form two distinct layers. 

 

5.2 OBJECTIVES 

Upon reading this unit learner will be able to: 

1. Immiscible liquids. 

2. Flow of two immiscible viscous fluids between two parallel plates. 

 

 

5.3   IMMISCIBLE FLUIDS 

 

The fluids which don’t mix or are not soluble in each other, are called immiscible fluids. 

For example, Petrol and water are two immiscible fluids. The top layer will be formed by petrol 

since it is lighter than water. Any two immiscible fluids when mixed form an emulsion.  

Two immiscible fluids can be separated by separating funnel. We put two immiscible 

fluids into the funnel and are left for a short time to settle out and form two layers. The tap of 

the funnel is opened and the bottom liquid is allowed to run. The two fluids are now separate. 

 

5.4 FLOW OF TWO IMMISCIBLE VISCOUS FLUIDS            

BETWEEN TWO PARALLEL PLATES 

 

 Consider the flow of two immiscible fluids between two parallel fixed horizontal plates 

under a constant pressure gradient  P dp dx  . 
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 Let the fluid with a coefficient of viscosity 
1  extend from y h   to 

0y h  and fluid 

with a coefficient of viscosity 
2  extend from 

0y h  to y h . 

 Assuming the fluids to be of constant densities and the flow to be steady uni-directional 

and depending on y  alone, the Navier-Stokes equation in x direction  is given by 

     2 2 2 20 dp dx du dy or d u dy P                  (5.1) 

Integrating Eq. (5.1),     1 1; .du dy P y c c const                 (5.2) 

Integrating Eq. (5.2),     2

1 2 22 ; .u P y c y c c const                     (5.3) 

 

 

 

 

 

 

 

 Let 1u  be the velocity in the region 0h y h    and 2u  be the velocity in the region 

0h y h  . Then, from Eq. (5.3), we get 

   2

1 1 02 ,u P y Ay B where h y h                    (5.4) 

   2

2 2 02 ,u P y Cy D where h y h                   (5.5) 

where, the arbitrary constants , ,A B C and D  are to be obtained from the boundary and interface 

conditions. The boundary conditions for 1 2u and u  are given by  

  1 0,u where y h                   (5.6) 

     and 2 0,u where y h                  (5.7) 

Fig. 5.1 
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 Since both the fluids are taken to be viscous, the fluids cannot slip over each other and 

consequently the velocity must be continuous at the interface. Thus,  

1 2 0,u u at y h                  (5.8) 

 By balancing the forces on a fluid element partly in the first fluid and partly in the other, 

it follows that the shearing stress must be continuous at the interface. Thus, we have 

   1 1 2 2 0,du dy du dy at y h                (5.9) 

In view of Eq. (5.6), putting 1 0u and y h    in Eq. (5.4), we have 

  2

10 2P h Ah B                             (5.10) 

Subtracting Eq. (5.10) from Eq. (5.4), we have  

     2 2

1 1 02 ,u P y h A y h where h y h                  (5.11) 

In view of Eq. (5.7), putting 2 0u and y h   in Eq. (5.5), we have 

  2

20 2P h Ch D                  (5.12) 

Subtracting Eq. (5.12) from Eq. (5.5), we have  

     2 2

2 2 02 ,u P y h C y h where h y h                 (5.13) 

Putting 0y d  in Eqs. (5.11) and (5.13) and equating the values so obtained by virtue 

of Eq. (5.8), we get 

           2 2 2 2

1 0 0 2 0 02 2P h h A h h P h h C h h             

        2 2

0 0 0 1 22 1 1C h h A h h P h h                    (5.14) 

From Eqs. (5.11) and (5.13), we have 

 1 1 02 2 ,du dy P y A where h y h                  (5.15) 

     and  2 2 02 2 ,du dy P y C where h y h                 (5.16) 
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Putting 
0y h  in Eqs. (5.15) and (5.16) and substituting the values so obtained in Eq. 

(5.9), we obtain 

               1 1 0 2 2 0 1 22 2 2 2P h A P h C so that A C                                   (5.17) 

Eliminating C  from Eqs. (5.14) and (5.17), we get 

          2 2

1 2 0 0 0 1 22 1 1A h h A h h P h h            

   
     2 2

01 0 2 0 2 1

2 1 22

P h hA h h A h h   

  

   
    

      
 2 2

0 2 1
0 2 1 2 1

12

P h h
A h h

 
   



 
        

  
 2 2

02 1 2 1
0

2 1 2 12

P h h
A h h

   

   

    
      

    
 

        2 2

1 0 02 ,A P h h h h                     (5.18) 

where    2 1 2 1                                       (5.19) 

Substituting the value of A  given by Eq. (5.18) in Eq. (5.11), we have 

  2 2

02 2

1 0

1 0

,
2

h h y hP
u y h where h y h

h h



 

   
       

  

           (5.20) 

Substituting the value of A  given by Eq. (5.18) in Eq. (5.17),  

 2 2

0

2 02

h hP
C

h h



 


  


                              (5.21) 

Substituting the above value of C  in Eq. (5.13), we have 

  2 2

02 2

2 0

2 0

,
2

h h y hP
u y h where h y h

h h



 

   
      

  

           (5.22) 

The required velocity is given by Eq. (5.20) and Eq. (5.22), The velocity distribution is 

plotted in Fig. 5.1. Observe that at the interface CD  the slope of the velocity profile is 
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discontinuous. This is so due to change in the coefficients of viscosity of the fluids on the two 

side of the interface.  

The flux Q  is given by 
0

0
1 2

h h

h h
Q u dy u dy


                 (5.23) 

Substituting the values of 
1 2u and u  given by Eq. (5.20) and Eq. (5.22), respectively in 

Eq. (5.23) and simplifying, we have 

 
    1 2 3 3 2 2 2

0 0 0 0

1 2

2 2 2 ,
6

P
Q h h h h hh h h

 
   

 


                 (5.24) 

where    2 2

0 03 2h h h h                                              (5.25) 

Particular case (i) If 1 2 ( )say    , then Eqs. (5.19) and (5.25), yield 0   . 

hence, Eq. (5.24) reduces to 

 32 3 ,Q Ph   

which is the flux obtained in the case of Poiseuille flow. 

  Particular case (ii) If we assume that the whole space is filled with fluid of coefficient 

of viscosity 1  so that 1h h . Then, we get  3

12 3 .Q Ph   

Similarly, if we take 0h h  , we get   3

22 3 .Q Ph   

 

Example 1: Two fluids of coefficient of viscosities 1  and  2  confined in region 0d y    

and 0 y d   respectively, are flowing between two parallel plates under a constant pressure 

gradient  P p x   . Show that when the plate at y d  is moving with constant velocity 

U , then the velocity distribution is given by  

 
 

 2 2 2

1 1 2

, 0
2

UP
u d y y d d y

d



  
      


 

 
 

 
 2

1 22 2 1

2 1 2 1 2

1
,0 , 1 .

2 2

PdUP
u U d y y d y d where

d U

 


    


        


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Solution. Here, we consider the flow of two immiscible fluids between two parallel plates 

 AB y d   at rest and  CD y d  moving with constant 

velocity U  under a constant pressure gradient  P p x   . 

Let be the direction of flow, y  the direction 

perpendicular to the flow, and the width of the plates parallel to 

the z direction . Here, the word infinite implies that the width 

of the plates is large compared with 2d  and the flow may be 

treated as two-dimensional (i.e., 0z   ). Let the plates be long enough in the x direction  

for the flow to be parallel. Here, we take the velocity components v and w to be zero 

everywhere. Moreover, the flow being steady, variables are independent of time  0t   . 

Furthermore, the equation of continuity (namely 0u x v y w z       ) reduces to 

0u x    so that  u u y . Thus, for the present problem, we have   

 , 0, 0, 0, 0u u y v w z t                 (1) 

 For the present two-dimensional flow in the absence of body forces, the Navier-stokes 

equations for x and y directions are given by 

 2 20 p x u y          (2) 

     and 0 p y         (3) 

 Equation (3) shows that the pressure does not depend on y . Hence, p  is a function of 

x   alone and so Eq. (2) reduces to     2 2 1d u dy dp dx  . 

Since P dp dx  , the above equation reduces to  2 2d u dy P   .  (4) 

Integrating Eq. (4),   1 1; .du dy P y C C const        (5) 

Integrating Eq. (5),    2

1 2 22 ; .u P y C y C C const        (6) 

Let 1u  be the velocity in the region 0d y    and 2u  be the velocity in the region 

0 y d  , then Eq. (6) gives 

Fig. 5.2 
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  2

1 12 ; 0u P y Ay B when d y            (7) 

      and   2

2 22 ; 0u P y Cy D when y d           (8) 

 Here , ,A B C and D  are arbitrary constants. We now proceed to calculate these 

constants with help of boundary conditions and interface conditions.  

 Now, boundary conditions for 1 2u and u  are given by  

  1 0,u where y d         (9) 

     and 
2 ,u U where y d                   (10) 

 Putting 1 0u  and y d   in Eq. (7), we have  

  2

10 2 ,P d Ad B                      (11) 

Subtracting Eq. (11) from Eq. (7), we obtain 

    2 2

1 12 ; 0u P y d A y d when d y                                 (12) 

Next, putting 2u U and y d  in Eq. (8), we have  

  2

22 .U P d Cd D                      (13) 

Subtracting Eq. (13) from Eq. (8), we obtain 

    2 2

2 22 ; 0 .u U P y d C y d when y d                      (14) 

Since both the fluids are taken to be viscous, the fluids cannot slip over each other and 

hence the velocity has to be continuous at the interface EF . Thus,  

1 2 , 0.u u at y                   (15) 

Putting in Eqs. (12) and (14) and equating the values so obtained by virtue of Eq. (15) 

gives 

    2 2

1 22 2P d Ad P d Cd U        or      2

2 12 1 1d A C Pd U       
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2 1

1 1

2

Pd U
A C

d 

  
       

   
                   (16) 

 Further, by balancing the forces on a fluid element partly lying in the first fluid and 

partly in the other, we find that the shearing stress has to be continuous at the interface EF . 

Thus, 

   1 1 2 2 , 0du dy du dy at y                  (17) 

From Eq. (12),   1 1du dy Py A    

When 0,y 
1du dy A                   (18) 

Now, from Eq. (142),   2 2du dy Py C    

When 0,y 
2du dy C                      (19) 

Using Eqs. (18) and (19), Eq. (17) implies that 

 

2 1 1 2 1 2 2 1

1 1 1
,

2

A C A C U Pd

d       

    
       

     
using Eq. (16) 

 

 

 
1 2

2 1 1 2 1 2 1 22

A C U Pd

d

 

       

  
    

   
 

 

 

 

 

 

   

 

 

1 2

2 1 1 2 1 2 1 2

1 2 1 22 1

1 2 1 1 2 1 2 2 1 2

2

,
2 2

A C U Pd

d

U UPd Pd
A and C

d d

 

       

    

         

  
    

   

 
    

   

 

Substituting these values of A  and C  in Eqs. (12) and (14), the required velocity 

distribution is  

   
 

 

 
1 22 2 2

1

1 1 2 1 1 2

, 0
2 2

PdUP
u y d y d when d y

d

 

     

  
         

   
             

     and    
 

 

 
1 22 2 1

2

2 1 2 2 1 2

, 0
2 2

PdUP
u U y d y d when y d

d

 

     

  
        

   
            

1 2 2 1A C A C     
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Rewriting the above results, we have 

 
   

 

2

1 2 22 2

1

1 1 2 1 2

1
2 2

Pd U y dP
u d y

U d

  

    

  
    

 
                                        (20) 

    and   
   

 

2

1 2 12 2

2

2 1 2 1 2

1
2 2

Pd U y dP
u U d y

U d

  

    

  
     

 
                        (21) 

Given that     2

1 2 1 21 2Pd U       . Hence, the required velocity distribution 

given by Eqs. (20) and (21) can be re-written as 

 
 

 

 
 

 

2 2 2

1 1 2

2 2 1

2 1 2

, 0
2

, 0 .
2

UP
u d y y d d y

d

UP
U d y y d y d

d



  



  

      


      


 

5.5 SUMMARY 

 This unit explains the following topics: 

(i) Definition of Fluid. 

(ii) Real and Ideal Fluids. 

(iii) Definition of Newtonian and non-Newtonian fluids based on Newton’s law of 

viscosity. 

(iv) Different types of non-Newtonian fluids. 

(v) Continuum hypothesis. 

(vi) Velocity and acceleration of fluid particle. 

 

5.6 GLOSSARY 

 

(i) Fluid 

(ii) Viscosity 

(iii) Newton’s law of viscosity 

(iv) Newtonian and non-Newtonian fluids 

(v) Shear stress 
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5.8 TERMINAL QUESTIONS 

 

1. Immiscible fluids oil and water can be 

(i) Separated by use of funnel. 

(ii) Can not be separated. 

(iii) Separated by use of a separating funnel. 

(iv) None of these. 

2. Two liquids that can be mixed together but separate shortly after are: 

(i) immiscible 

(ii) insoluble 

(iii) miscible 

(iv) soluble 

 

3. The constant pressure gradient P  for the flow of two immiscible fluids between two fixed 

parallel horizontal plates is 

(i) 0P   

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
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(ii) 
dp

P
dx

   

(iii) .P const  

(iv) None of these 

 

4. If fluids are to be of constant densities and the flow be steady uni-directional and 

depending on y  alone, the Navier-Stokes equation in x direction  is given by 

(i)  2 2d u dy P    

(ii)    2 2 0dp dx du dy    

(iii) Both (i) and (ii) 

(iv) None of these 

 

5. In case of a steady flow, which of the following conditions is true? 

(i) The velocity is constant in the flow field with respect to space. 

(ii) The velocity is constant at a point with respect to time. 

(iii) The velocity does not change from place to place. 

(iv) The velocity changes at a point with respect to time. 

 

6. For a steady flow, the values of all fluid properties at any fixed point 

(i) change with location. 

(ii) do not change with time. 

(iii) do not change with location. 

(iv) change with time.  

 

7. Two fluids are taken viscous and they cannot slip over each other. Then, velocity must be  

(i) continuous at the interface. 

(ii) zero at the interface. 

(iii) discontinuous at the interface. 

(iv) None of these. 
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8. If both viscosities 
1 2and   are equal i.e.,  

1 2 ( )say    . Then, the flux for the flow 

of two immiscible viscous fluids between two parallel plates is given by 

(i) 0Q   

(ii)  32 3Q Ph    

(iii)  32 3Q Ph   

(iv) 32 3Q P h  

 

9. The flux for Poiseuille flow is given by 

(i)  32 3Q Ph   

(ii)    32 3Q P h  

(iii) 32Q P h  

(iv) 33Q P h  

 

10. If the flow of two immiscible fluids between two parallel plates  AB y d   at rest and 

 CD y d  moving with constant velocity U  under a constant pressure gradient. The 

flow is steady (variables are independent of time  0t   ). Then, the equation of 

continuity is given by 

(i) 0u x v y w z        

(ii) 0u x v y w z        

(iii) 0u x v y w z        

(iv) 0u x    

 

11. What is the unit of rate of flow of discharge? 

(i) m2/sec 

(ii) m3/sec 

(iii) Litres-sec 

(iv) All of the above 

 

12. The unit of viscosity is 
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(i) m2/sec 

(ii) kg-sec/m 

(iii) N-sec/m2 

(iv) N-sec/m 

 

13. Fluid is a substance that 

(i) always expands until it fills any container. 

(ii) can’t be subjected to shear forces. 

(iii) can’t remain at rest under action of any shear force. 

(iv) flows. 

 

14. Immiscible fluids are soluble in each other. 

(i) True 

(ii) False 

 

15. The flow in which the velocity at any given time changes with respect to space is known 

as 

(i) Uniform flow 

(ii) Non-uniform flow 

(iii) Compressible flow 

(iv) Incompressible flow 

 

16. The separation of immiscible liquids can be observed as distinct layers based on density. 

(i) True 

(ii) False 

 

17. Temperature changes generally do not affect the miscibility of immiscible liquids 

significantly. 

(i) False 

(ii) True 
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18. Two fluids of coefficient of viscosities 
1  and  

2  confined in region 0d y    and 

0 y d   respectively, are flowing between two parallel plates under a constant pressure 

gradient  P p x   . Show that when the plate at y d  is moving with constant 

velocity U , then find the velocity distribution. 

 

19. Write a short note on immiscible fluids. 

 

20. Derive the formula for flow of two immiscible viscous fluids between two parallel plates. 

 

21. Write a short note on Poiseuille flow.  

 

22. Derive the expression of flux for the Poiseuille flow. 

 

 

5.9  ANSWERS 

 

1. (iv) 

2. (i) 

3. (ii) 

4. (iii) 

5. (ii) 

6. (ii) 

7. (i) 

8. (iii) 

9. (i) 

10. (iv) 

11. (ii) 

12. (ii) 

13. (iii) 

14. (ii) 

15. (ii) 

16. (i) 
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17. (ii) 

18. 

 
 

 

 
 

 

2 2 2

1 1 2

2 2 1

2 1 2

, 0
2

,0
2

UP
d y y d d y

d
u

UP
U d y y d y d

d



  



  


      

 
      
 

        

 
 2

1 2

1 2

1
1 .

2

Pd
where

U

 





   
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UNIT 6: EULER’S EQUATION OF MOTION 

 

CONTENTS:  

            6.1   Introduction  

            6.2   Objectives 

6.3  Euler’s Equation of Motion under Conservative Body Forces 

6.4  Case of steady motion under Conservative Body Forces 

6.5 Applications of Bernoulli’s equation and theorem 

 6.5.1 Pitot tube 

 6.5.2 Venturi meter (or tube) 

 6.5.3   Flow from a tank through a small orifice 

6.6  Euler’s momentum theorem 

6.7 D’Alembert’s paradox 

6.8    Summary 

6.9     References And Suggested Readings 

6.10   Terminal questions 

6.11   Answers 
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6.1 INTRODUCTION 

Euler's Equation assumes that the forces acting on the fluid are conservative. This 

assumption implies that the potential energy of the fluid does not change within the flow field. 

It allows for the conservation of mechanical energy and simplifies the mathematical 

formulation of the equation. 

 

6.2 OBJECTIVES 

Upon finishing this unit, learner should be able to: 

(i) Euler’s Equation of Motion under Conservative Body Forces. 

(ii) Applications of Bernoulli’s equation. 

 

6.3 EULER’S EQUATION OF MOTION UNDER   

CONSERVATIVE BODY FORCES 

 

         When a velocity potential exists (so that the motion is irrotational) and the 

external forces are derivable from a potential function, the equations of motion can 

always be integrated. Let   be the velocity potential and V  be the force potential. 

Then, by definition, we get 

             , , ,u v w
x y z

    
     

  
          (6.1) 

           , , ,
V V V

X Y Z
x y z

  
     

  
        (6.2) 
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and    , , .
u v v w w u

y x z y x z

     
  

     
           (6.3) 

 Then, well known Euler’s dynamical equations are 

1

1

1

u u u u p
u v w X

t x y z x

v v v v p
u v w Y

t x y z y

w w w w p
u v w Z

t x y z z







    
    

    

    
    

    

    
    

    

 

 Using Eqs. (6.1), (6.2) and (6.3), these can be re-written as 

2

2

2

1

1

1

u v w V p
u v w

t x x x x x x

u v w V p
u v w

t y y y y y y

u v w V p
u v w

t z z z z z z













     
       
      


      

       
       

     
       
       

                            (6.4) 

 Re-writing Eq. (6.4), we get 

 2 2 21 1

2

V p
u v w

x t x x x





     
       
          (6.5) 

 2 2 21 1

2

V p
u v w

y t y y y





     
       
           (6.6) 

 2 2 21 1

2

V p
u v w

z t z z z





     
       
     

           (6.7) 

Now  d dx dy dz
t x t y t z t

                
         

             
             (6.8)  
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V V V
dV dx dy dz

x y z

       
       

       
              (6.9) 

p p p
dp dx dy dz

x y z

       
       

       
          (6.10) 

       2 2 2 2 2 2 2 2 2 2 2 2d u v w u v w dx u v w dy u v w dz
x y z

  
          

  
        (6.11) 

 Multiplying Eqs. (6.5), (6.6) and (6.7) by ,dx dy and dz  respectively, then 

adding and using Eqs. (6.8), (6.9), (6.10) and (6.11), we have 

 2 2 21 1

2
d d u v w dV dp

t





 
       

 
 

       21 1
0

2
d dq dV dp

t





 
      

 
              (6.12) 

where 2 2 2 2q u v w    (velocity of the fluid particle)2 

 If   is a function of p , integration of Eq. (6.12) gives 

 21
,

2

dp
q V F t

t






    
                              (6.13) 

where  F t  is an arbitrary function of t  arising from integration in which t  is 

regarded as constant. Eq. (6.13) is Bernoulli’s equation in its most general form. 

Equation (6.13) is also known as the pressure equation. 

 Case (i) Let the fluid be homogeneous and inelastic (so that   constant i.e., 

fluid is incompressible). Then, Bernoulli’s equation for unsteady and irrotational 

motion is given by 
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 21
,

2

p
q V F t

t






    


                                                  (6.14) 

 Case (ii) If the motion be steady 0
t





. Then, Bernoulli’s equation for the 

steady irrotational motion of an incompressible fluid is given by 

2

,
2

q p
V C


    where C  is an absolute constant.            (6.15) 

 

6.4 CASE OF STEADY MOTION UNDER CONSERVATIVE BODY 

FORCES 

 

When the motion is steady and the velocity potential does not exist, we have 

21
,

2

dp
q V C


    

where V  is the force potential from which the external forces are derivable.  

Proof. Consider a streamline AB  in the fluid. Let s  be an element of this stream line 

and CD  be a small cylinder of cross-sectional area   and s  as axis. If q  be the velocity 

and S  be the component of external force per unit mass in direction of the streamline, 

then by the Newton’s second law of motion, we have 

. .
Dq p

s s S p p s
Dt s

      
 

    
 
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1Dq p

S
Dt s


  


 

  
1q q p

q S
t s s

  
   

  
  (6.16) 

 If the motion be steady 0,
q

t





 and if the external forces have a potential function V  

such that 
V

S
s


 


, Eq. (6.16) reduces to 

21 1
0

2

q V p

s s s

  
  

  
                (6.17) 

 If   is a function of p , integration of Eq. (6.17) along the streamline AB  yields 

21
,

2

dp
q V C


                    (6.18) 

where C  is a constant, whose value depends on the particular chosen streamline. 

 Case (i) If the fluid be homogeneous and incompressible,   constant and hence Eq. 

(6.18) reduces to  

2

.
2

q p
V C


                    (6.19) 

 Case (ii) Let S  be a gravitational force per unit mass. Let h  be the vertical distance 

between C  and D . Then, we have  

  ,
h

S g gh as V gh
s s

 
    

 
 

Hence, if the fluid is incompressible, Eq. (6.18) reduces to 

Fig. 6.1 
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2

.
2

q p
gh C


             (6.20) 

It is also termed as “Bernoulli’s theorem”. 

Example 1: A stream is rushing from a boiler through a conical pipe, the diameter of the 

ends of which are D  and d ; if V  and v  be the corresponding velocities of the stream 

and if the motion is supposed to be that of the divergence from the vertex of the cone, 

prove that 

 2 22
/ 2

2

v V kv D
e

V d

 
  
 

 

where k  is the pressure divided by the density and supposed constant. 

Solution. Let AB  and ' 'A B  be the ends of the conical pipe such that ' 'A B d  and 

AB D . Let 1  and 2  be densities of the stream at ' 'A B  and AB . By principle of 

conservation of mass, the mass of the stream that enters the end AB  and leave at the end 

' 'A B  must be the same. Hence, the equation of continuity is  

2 2

1 2
2 2

d D
v V   

   
   

   
 

So that    
2

2

2

1

v D

V d




     (1) 

 By Bernoulli’s theorem (in the absence of external forces like gravity), we have 

21

2

dp
q C


         (2) 

Fig. 6.2 
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Given that 
p

k

   so that dp k d        

 (3) 

Hence, Eq. (2) reduces to 
21

,
2

d
k q C




   using Eq. (3) 

Integrating,   
2

log ,
2

q
k C   C  being an arbitrary constant.   

  (4) 

When 1 2., ,q v and when q V       Hence, Eq. (4) yields 

2 2

1 2log log
2 2

v V
k C and k C      

Subtracting,    
 2 2

2 1log log 0
2

V v
k  


    

     
   2 2

2 2

2 2 2

1 1

log
2

v V

k
v V

or e
k

 

 


 

   
 

    (5) 

Using Eq. (5), Eq. (1) reduces to  

 2 22
2

2
.

v V kv D
e

V d

 
  
 

 

Example 2: A quantity of liquid occupies the length 2l  of a straight tube of uniform 

small bore under the action of a force to a point in the tube varying as a distance from 

that point. Determine the pressure at any point.  

      OR 
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 A quantity of liquid occupies the length 2l  of a straight tube of uniform bore under the 

action of a force which is equal to x  to a point O  in the tube, where x  is the distance 

from O . Find the motion and show that if z  be the distance of the nearer free surface 

from O , pressure at any point is given by      2 21
.

2

p
x z x z z l 


       

Solution. Let p  be the pressure and u  the velocity at a distance x  from the fixed point 

O ; and let z  be the distance of the nearer free surface from O . Then, the equation of 

continuity is 

0
u

x





                (1) 

 Let x  be the external force at a distance x  which acts towards O . Then, the equation 

of motion  

1u u p
u X

t x x

  
  

  
      reduces to     

1u p
X

t x




 
  

 
  (2) 

Integrating Eq. (2) with respect to ‘ x ’, we get 

21
,

2

u p
x x C C

t





   


being an arbitrary constant (3) 

But 0p   when x z  and 2x z l  . So, Eq. (3) gives 

21

2

u
z z C

t



  


     (4) 

   
21

2 2
2

u
z l z l C

t



    


   (5) 

Subtracting Eq. (4) from Eq. (5), we get 
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   
2 21

2 2
2

u u
l z l z C or z l

t t
 

         
  

  (6) 

   
2

2

d z dz
z l u

dt dt


 
     

 
      (7) 

Putting z l y   so that z y l  . Then, Eq. (7) gives 

2

2
0

d y
y

dt
   

whose solution is  cos ,y A t B  A and B  being arbitrary constants. 

Since 1y z  , it yields  cosz A t B l       (8) 

in which A and B  may be determined from the knowledge of initial position and velocity.  

We now determine pressure. From Eq. (4), we get 

21

2

u
C z z

t



 


 

Putting this value of C  in Eq. (3), we get 

        2 2 2 21 1
,

2 2

p u p
x z x z or x z x z z l

t
  

 


          


  

using Eq. (6) which gives the pressure at any point.  

Example 3: A jet of water 8 cm. in diameter impinges on a plate held normal to its axis. For a 

velocity of 4 m/sec., what force will keep the plate in equilibrium? 

Solution. Diameter of jet = d  = 8 cm. = 0.08 m. 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                                                         99 

 

  Area of cross-section of the jet =  
22 20.08

4 4
S d m

    
      
   

  

q   velocity of jet = 4 m/sec. 

w  weight per unit cubic meter of water = 103 kg/m3 

F   Force acting on the jet. 

Now,  force on the plate = charge in momentum 

       
2 22 1000 4 0.08 4

32.8 .
9.81

w Sq q wSq
F kg

g g

  
      

 

6.5 APPLICATIONS OF BERNOULLI’S EQUATION 

  Bernoulli’s equation is of fundamental importance in the fluid 

dynamics, especially in hydraulics. It is employed to handle some complicated 

situations of fluid flow problems in a simple manner. We now discuss some 

practical applications of the Bernoulli’s equation. In each case the fluid will be 

assumed inviscid and incompressible.  

 

6.5.1   PITOT TUBE 

 A Pitot tube is an instrument to measure the velocity of flow 

at the required point in a pipe or a stream. Suppose we wish to 

determine the velocity q  of a stream of water. The inner tube BA  is kept so as to face the 

direction of the flow as shown in figure. The outer tube of the Pitot tube has holes such as H . 

If p  is the pressure in the stream where the fluid velocity is q  then p  

Fig. 6.3 

Fig. 6.4 
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is also the pressure on the inside and outside of the hole and therefore p  is also the pressure at 

the meniscus D  of the mercury in the U  tube (manometer). Let the stream enter the tube AB  

and let it be brought to rest at meniscus C . C is called a stagnation point. Let 
0p be pressure 

at C . Applying the Bernoulli’s equation to the streamline passing through A  and C , we have 

 02 0
21

,
2

p ppp
q q

  

 
     

 
              (6.21) 

where   is the density of the water.  

 Let h  be the difference in level of the mercury in the U  tube and let   be the density 

of the mercury. Then we have   0p p gh              (6.22) 

 Using (6.22), (6.21) reduces to   
1 2

2q gh             (6.23) 

which determines the fluid velocity at a point in the flow region. 

 

 

 

6.5.2   VENTURI METER (OR TUBE) 

 A venturi meter is an instrument to measure the fluid velocity in pipes. The flow rate of 

a fluid in conduit and the discharge of a fluid flowing in a pipe may also be measured. The 

venturi meter is made up of a constant cross-section 1S  tapering to a section of small cross-

section 2S  (also known as throat) and then gradually expanding to the original cross-section. 

A U  tube serving as a mercury manometer is attached to connect the broad and narrow 

sections at A  and B . Fig. 6.5 
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 Let 
1 2,q q  be the fluid velocities at ,A B  and 

1 2,p p  the pressures. Then by the equation 

of continuity, we have   

     1 1 2 2 2 1 1 2q S q S q q S S                   (6.24) 

Applying the Bernoulli’s equation to the central streamline passing through A  and B , 

we get  

    
2 21 2
1 2

1 1
,

2 2

p p
q q

 
               (6.25) 

where   is the density of the fluid. Eliminating 2q  from (6.24) and (6.25), we have 

    
 

 

1 2
2

1 2 2

1 2 2

1 2

2 p p S
q

S S

  
  

  

            (6.26) 

 Let h  be the difference in levels of the mercury in the U  tube and let   be the density 

of the mercury. Then, we have  1 2p p gh              (6.27) 

 Using (6.27), (6.26) reduces to  
 

1 2
2

2
1 2 2

1 2

2 ghS
q

S S





  
  

  

                      (6.28) 

 Let Q  be the flow rate of the fluid flowing through the broad section at A . Then 

     
 

1 2
2

2
1 1 1 1 2 2

1 2

2 ghS
q q S S

S S


 



  
   

  

          (6.29) 

 Remarks: Let the venturi meter be kept inclined at a certain angle to the horizon. With 

reference to a fixed horizontal line, let vertical heights of A  and B  be 1h  and  2 2 1h h h  and 

let 2 1h h h   . then equation (6.25) modifies in the following form: 
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2 21 2
1 1 2 2

1 1

2 2

p p
q gh q gh

 
                 (6.30) 

 Eliminating 
1q  from (6.24) and (6.30), we get 

   
   

  

1 2

1 2 2 1

2 2 2

2 1

2

1

p p g h h
q

S S

        
  

  

And hence the flow rate at either sections is given by  

   
 

  

1 2

2 2 2 2 2

2 1

2

1

gh g h
Q S q S

S S

         
  

           (6.31) 

 Let C  be the coefficient of venturi meter (or the coefficient of discharge). Let Q  be the 

discharge through the venturi meter. Then we know that 

   
 

  

1 2

2 2 2 2 2

2 1

2

1

gh g h
Q CS q CS

S S

         
  

           (6.32) 

 If 0h   (i.e., the venturi meter is horizontal), then (6.32) reduces to  

    1 2

2 2

1 2

2 .
CS S

Q gh
S S







            (6.33) 

 

6.5.3   FLOW FROM A TANK THROUGH A SMALL ORIFICE 
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 Consider a tank containing a liquid. Let the tank be sealed except for a small orifice 

near the base. We wish to determine the velocity of efflux from the tank when the orifice is 

opened. Let 
1S  and 

2S  be the areas of cross-section of the tank and the orifice respectively. 

 Now the water will move out steadily in the form of a smooth jet. Let the line connecting 

point 1 on the liquid surface with the point 2 in the jet represents a streamline of the flow. Then, 

the Bernoulli’s theorem yields  

 
2 21 2
1 1 2 2

1 1

2 2

p p
q gh q gh

 
       (6.34) 

 But from figure    1 2h h h              (6.35) 

 Now, from the equation of continuity, we have 

     1 1 2 2 1 2 1 2q S q S q S S q              (6.36) 

 Using (6.35) and (6.36), (6.34) reduces to  

       
2

2 22
2 2 1 2 1 22

1

1 1 1

2 2

S
q q g h h p p

S 
      

   

  
2

2 2
2 1 22

1

1 1
1

2

S
q gh p p

S 

 
      

 
 

   

 1 2
2 2

2

2

1

2

1

p p
q gh

S

S



 
   

   
 

 

           

(6.37) 

which gives the desired velocity of efflux from the tank through the orifice. 

Fig. 6.6 
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 We now discuss two special cases of (6.37): 

 Case (i) Suppose the tank is vented to the atmosphere or has an open surface, so that 

1 2p p . Further, let 
2 1S S . then, (6.37) reduces to 

     
2 2 .q gh                (6.38) 

 Hence, the velocity of efflux from the vented tank is equal to that of a rigid body falling 

freely from a height h . 

 The above result is known as Torricelli’s theorem. 

Case (ii) Let 2 1S S  and let 
 1 2p p

gh



 . Then (6.37) 

reduces to 

    
 1 2

2

2
.

p p
q




  

 

6.6   EULER’S MOMENTUM THEOREM 

 Consider steady motion of a non-viscous liquid contained between, AB  and CD  of the 

filament at a given time t . the surrounding fluid will produce a force on the walls and ends of 

the filament. By Newton’s second law of motion, the net force will be equal to the rate of 

change of momentum of the fluid in the filament ABCD  at time t . At time t t , let the new 

position of the fluid be ' ' ' 'A B C D . them notice that the momentum of the given fluid has 

increased by the momentum of the fluid between CD  and ' 'C D  and has decreased by the 

momentum of the fluid between AB  and ' 'A B . 

   Gain of momentum at CD  =  2 2 2q t q   
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and  loss of momentum at AB  =   1 1 1q t q   

where 
1q  and 

2q  are the velocities at AB  and CD  respectively.  

 Hence, the net gain =  2 2

2 2 1 1t q q    

or the rate of gain =  2 2

2 2 1 1 .q q    

 This gives the resultant force due to the pressure of the surrounding liquid on the walls 

and ends of the filament. This result is known as “Euler’s momentum theorem”. 

 

6.7   D’ALEMBERT’S PARADOX 

 Consider a long straight channel of uniform cross section in which a liquid is flowing 

with a uniform speed q . Let the ends of the tube be bounded by 

equal cross-sectional area  . If an obstacle A  is placed in the 

middle of the channel, the flow in the immediate neighbourhood 

of A  will be disturbed whereas the flow at a great distance either 

up-stream or down-stream will remain undisturbed. Suppose F  is the force required to hold 

the obstacle to rest, in the direction of uniform flow.  

 Let 'BB  and 'CC  be two sections at a great distance from A  and let the fluid between 

these sections be split up into stream filaments. Since the outer filaments are bounded by the 

walls of the channel, the thrust components are normal to the direction of flow. Moreover, the 

obstacle A  acts on those filaments which are in contact with it by a force F . 

 By Euler’s momentum theorem the resultant of all the thrusts on the fluid is 

2 2.q q   

Fig. 6.7 
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 Let 
1p  and 

2p  be the pressures on 'BB  and 'CC  respectively. Then, Bernoulli’s 

theorem gives  

  
2 21 21 1

2 2

p p
q C q

 
      so that 

 
1 2p p  

 Now, the thrust due to pressure 1p  and 2p  is  1 2p p  . 

 Thus, the equation of motion becomes 

  
2 2

1 2p p F p q p q        so that  1 20,F as p p   

 Let the diameter of the channel increase indefinitely. Then the above problem reduces 

to that of an obstacle immersed in an infinite uniform stream. As before, again the resultant 

force exerted by the liquid on the obstacle is zero. 

 Now let us superimpose a velocity u  in the opposite direction on the entire system (the 

body A  and the liquid). Then, the body A  can be thought as moving with uniform velocity u  

and the liquid at great distance is reduced to rest. 

 Thus, a body moving with uniform velocity through an infinite liquid, otherwise at rest, 

will experience no resistance at all. This result is known as D’Alembert’s paradox. 

 

6.8 SUMMARY 

In this unit we studied: 

(i)   D’Alembert’s paradox. 

(ii)   Euler’s Equation of Motion under Conservative Body Forces. 

(iii)  Euler’s momentum theorem. 

 

Fig. 6.8 
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6.10 TERMINAL QUESTIONS 

 

1. If the motion is steady, velocity potential does not exist and V be the potential function 

from which the external forces are derivable, then Bernoulli’s theorem is  

(i) 21

2

dp
q V C

t






    
   

(ii) 21

2

dp
q V C


    

(iii) 
2

2

p q
V C


    

(iv) None of these. 

2. The equation  
2

.
2

q p
const


   is known as 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
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(i) Navier equation 

(ii) Stokes equation 

(iii) Bernoulli equation 

(iv) Euler equation 

3. For a perfect incompressible liquid, flowing in a continuous stream, the total energy of a 

particle remains the same, while the particle moves from one point to another. This 

statement is called: 

(i) Continuity equation 

(ii) Archimedes principle 

(iii) Pascal’s law 

(iv) Bernoulli’s equation 

4. The Bernoulli’s equation is based on the assumption that: 

(i) There is no loss of energy of the liquid flowing. 

(ii) The velocity of flow is uniform across any cross-section. 

(iii) No force except gravity acts on the fluid. 

(iv) All of the above. 

  

5. The Euler’s equation for the motion of liquids is based upon the assumption that: 

(i) The fluid is non-viscous, homogeneous and incompressible. 

(ii) The velocity of flow is uniform over the section. 

(iii) The flow is continuous, steady and along the stream line. 

(iv) All of the above. 

 

6. The Bernoulli’s equation for unsteady and irrotational motion is given by: 
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(i)  
2

2

q p
V F t

t






    


 

(ii)  
2

2

q
V F t

t


   


 

(iii)  
2

2

q p
V F t

t






    


 

(iv)  
2

2

q p
V F t


    

7. A horizontal pipe gradually reduces in diameter from 24 in. to 12 in. Determine the total 

longitudinal thrust exerted on the pipe if the pressure at the larger end is 50 lbf/in2 and the 

velocity of the water is 8 ft./sec. 

 

8. Calculate the force exerted by a jet of water 3/4 in. in diameter which strikes a flat plate at 

an angle of 30  to the normal of the plate with a velocity of 30 ft/sec if (a) the plate is 

stationary, (b) the plate is moving in the direction of the jet with a velocity of 10 ft/sec. 

 

9. Briefly explain the application of Bernoulli’s theorem. 

 

10. State and prove D’Alembert’s paradox. 

 

11. A stream in a horizontal pipe, after passing a contraction in the pipe at which its sectional 

area is A  delivered at atmospheric pressure at a place, where the sectional area is B . show 

that if a side tube is connected with the pipe at the former place, water will be sucked up 

through it into the pipe from a reservoir at a depth    2 2 22 1 1s g A B   below the pipe, 

s  being the delivery per second.  
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12. Air, obeying Boyle’s law, is in motion in a uniform tube of a small section prove that if   

be the density and v  the velocity at a distance x  from a fixed point at time t , then  

  
2 2

2

2 2
, .

p
v k where k

t x






 
  

 
 

 

13. If the body force F  form a conservative system, density   is a function of p  only and 

the flow is steady, prove that 2 2P q   is constant along every streamline and vortex 

line, where 
1

, .F P dp and q is velocity


 
    

 
  

 

6.11 ANSWERS 

1. (ii) 

2. (iii) 

3. (iv) 

4. (iv) 

5. (iv) 

6. (i) 

7. 95040  

8. (a) 4.63 Ibf.     (b) 3.09 Ibf.        

Fig. 6.9 
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7.1 INTRODUCTION 

Two-dimensional flows in fluid dynamics involve the study of fluid 

motion confined to a plane described by velocity components dependent on 

two spatial coordinates. Key concepts include the stream function, which 

defines streamlines, and the potential function for irrotational flows. 

Vorticity measures local fluid rotation. Types of two-dimensional flows 

include potential flow, vortex flow, source/sink flow, and uniform flow. 

These concepts are crucial for applications in aerodynamics, 

hydrodynamics, and environmental science, helping to analyze and predict 

fluid behavior in various practical scenarios. 

7.2 OBJECTIVES 

  

After completion of this unit learners will be able to: 

(i). Understand fluid flow in two dimensions. 

(ii). Use cylindrical polar coordinates to study fluid flow. 

 

7.3 MEANING OF TWO –DIMENSIONAL FLOW 

Let a fluid move in such a way that at any given instant the flow pattern 

in a certain plane (say 𝑋𝑂𝑌 ) is the same as that in all other parallel planes 

within the fluid. Then the fluid is said to have two-dimensional motion. If 

(𝑥, 𝑦, 𝑧) are coordinates of any point in the fluid, then all physical quantities 

(velocity, density, pressure etc.) associated with the fluid are independent 

of 𝑧. Thus 𝑢, are functions of 𝑥, 𝑦 and 𝑡 and 𝑤 = 0 for such a motion.  
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To make the concept of two-dimensional motion clearer, suppose the plane 

under consideration be 𝑥𝑦-plane. Let 𝑃 be an arbitrary point on that plane. 

Draw a straight line 𝑃𝑄 parallel to 𝑂𝑍 (or perpendicular to the 𝑥𝑦-plane). 

Then all points on the line 𝑃𝑄 are said to correspond to 𝑃. Draw a plane (in 

the fluid) parallel to the 𝑥𝑦-plane and meeting 𝑃𝑄 in 𝑅. Then, if the velocity 

at 𝑃 is 𝑉 in the 𝑥𝑦 plane in a direction making an angle 𝛼 with 𝑂𝑋, the 

velocity at 𝑅 is also 𝑉 in 

magnitude and parallel in 

direction to the velocity at 𝑃 as 

shown in the figure. It follows 

that the velocity at 

corresponding points is a 

function of 𝑥, 𝑦 and the time 𝑡, 

but not of 𝑧. 

To maintain physical reality, we assume that the fluid in two-dimensional 

motion is confined between two planes parallel to the plane of motion and 

at a unit distance apart. The reference plane of motion is taken parallel to 

and midway between the assumed fixed planes. Thus, while studying the 

flow of a fluid past a cylinder in a two-dimensional motion in planes 

perpendicular to the axis of the cylinder, it is useful to restrict attention to a 

unit length of cylinder confined between the said planes in place of 

worrying over the cylinder of infinite length. 

Suppose we are dealing with a two-dimensional motion in 𝑥𝑦 plane. Then 

by flow across a curve in this plane, we mean the flow across unit length of 

a cylinder whose trace on the plane 𝑥𝑦 is the curve under consideration, the 

generators of the cylinder being parallel to the 𝑧-axis. By a point in a flow, 

we mean a line through that point parallel to 𝑧-axis. 
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7.4 EQUATION OF CONTINUITY FOR TWO-  

     DIMENSIONAL FLOW 

Consider a rectangular prism of fluid of an elementary cross-section ABCD 

(Fig 7.1). Let its size be 𝛿𝑥 by 𝛿𝑦 in the X-Y plane and of unit length 

perpendicular to the plane. At the centroid ( 𝑋, 𝑌 ) of ABCD, let the fluid 

density be 𝜌, 𝑢 the X-component and 𝑣 the Y-component of velocity. 

Mass rate of flow across        𝐸𝐹 = 𝜌𝑢𝛿𝑦 

and mass rate of flow across GH = 𝜌𝑣𝛿𝑥. 

The rate of change of any quantity with respect to distance in X-direction is 

mathematically expressed as ∂/ ∂𝑥 of that quantity. Likewise, ∂/ ∂𝑦 of any 

quantity represents the rate of change of the quantity with respect to distance 

in Y-direction. 

 

Fig 7.1: Flow through a Two-dimensional Rectangular Fluid Element 

 

∴ Mass rate of flow entering the side 
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𝐴𝐵 = 𝑚1 = 𝜌𝑢𝛿𝑦-
𝜕

𝜕𝑥
(𝜌𝑢)

1

2
𝛿𝑥𝛿𝑦, 

and mass rate of flow leaving the side 

𝐶𝐷 = 𝑚2 = 𝜌𝑢𝛿𝑦 +
∂

∂𝑥
(𝜌𝑢)

1

2
𝛿𝑥𝛿𝑦. 

In unit time, therefore, the gain in mass in X-direction is equal to 

𝑚𝑥 = 𝑚1 − 𝑚2 = −
𝜕

𝜕𝑥
(𝜌𝑢)𝛿𝑥𝛿𝑦 

By a similar analysis in y-direction, it can be shown that the gain in mass 

per unit time in Y-direction is equal to 

𝑚𝑦 = −
∂

∂𝑥
(𝜌𝑢)𝛿𝑥𝛿𝑦 

The total gain in mass per unit time is 

𝑚 = 𝑚𝑥 + 𝑚𝑦 = − [
∂

∂𝑥
(𝜌𝑢) +

∂

∂𝑦
(𝜌𝑣)] 𝛿𝑥𝛿𝑦 

According to the principle of conservation of mass, 𝑚 should be equal to 

the time rate of increase of mass within the element, viz., 
∂

∂t
(𝜌𝛿𝑥𝛿𝑦) 

 ∴ − [
∂

∂𝑥
(𝜌𝑢) +

∂

∂𝑦
(𝜌𝑣)] 𝛿𝑥𝛿𝑦 =

∂

∂𝑡
(𝜌𝛿𝑥𝛿𝑦)

 or 
∂𝜌

∂𝑡
+

∂(𝜌𝑢)

∂𝑥
+

∂(𝜌𝑣)

∂𝑦
= 0

  

(1) 

Which is the continuity equation for two-dimensional unsteady 

compressible flow. If the flow is steady, there would be no change with 

respect to time and the equation reduces to 

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
= 0 

(2) 
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If the flow is incompressible, the density is constant and hence 𝜌 can be 

taken outside the differential. further (2) reduces to 

∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 0 

(2) 

which is the continuity equation for two-dimensional steady incompressible 

flow. 

7.4.1 EXAMPLES BASED ON EQUATION OF  

         CONTINUITY 

 

Example 1. Consider a velocity field 𝑢 = 𝑥2 and 𝑣 = −2𝑥𝑦. Determine if this 

field satisfies the continuity equation. 

Solution. Calculate the partial derivatives: 

∂𝑢

∂𝑥
=

∂(𝑥2)

∂𝑥
= 2𝑥

∂𝑣

∂𝑦
=

∂(−2𝑥𝑦)

∂𝑦
= −2𝑥

 

Now, add these derivatives: 

∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 2𝑥 + (−2𝑥) = 0 

The given velocity field satisfies the continuity equation. 

 

Example 2. Consider a velocity field 𝑢 = 2𝑥 − 𝑦2 and 𝑣 = 4𝑦. Verify if it 

satisfies the continuity equation. 

Solution. Calculate the partial derivatives: 

∂𝑢

∂𝑥
=

∂(2𝑥 − 𝑦2)

∂𝑥
= 2

∂𝑣

∂𝑦
=

∂(4𝑦)

∂𝑦
= 4
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Now, add these derivatives: 

∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 2 + 4 = 6 

Since the sum is not zero, the given velocity field does not satisfy the continuity 

equation. 

Example 3. Examine whether the velocity field: 𝑉 = 2𝑎𝑥(3𝑦2 − 𝑥2)𝑖 +

2𝑎𝑦 (3𝑥2 − 𝑦2)𝑗 represents a possible two-dimensional incompressible 

fluid flow. 

Solution. From the given velocity field, it is clear that 

𝑢 = 2𝑎𝑥(3𝑦2 − 𝑥2) and 𝑣 = 2𝑎𝑦(3𝑥2 − 𝑦2) 

A two - dimensional incompressible flow must satisfy the continuity equa- 

tion: 
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 0 

∂𝑢

∂𝑥
=

∂

∂𝑥
[2𝑎𝑥(3𝑦2 − 𝑥2)]

 =
∂

∂𝑥
(6𝑎𝑦2 − 2𝑎𝑥3) = 6𝑎𝑦2 − 6𝑎𝑥2 = 6𝑎(𝑦2 − 𝑥2)

∂𝑣

∂𝑦
=

∂

∂𝑦
[2𝑎𝑦(3𝑥2 − 𝑥𝑦2)]

 =
∂

∂𝑦
(6𝑎𝑥2𝑦 − 2𝑎𝑦3)

 = 6𝑎𝑥2 − 6𝑎𝑦2 = 6𝑎(𝑥2 − 𝑦2)

 ∴  
∂𝑢

∂𝑥
=

∂𝑣

∂𝑦
= 6𝑎(𝑦2 − 𝑥2) + 6𝑎(𝑥2 − 𝑦2) = 0

 

The continuity equation is satisfied. Hence the given velocity field 

represents a possible two-dimensional incompressible flow. 

Example 4. The velocity distribution for the flow of an incompressible 

fluid is given by 𝑢 = 3 − 2𝑥, and 𝑣 = 4 + 2𝑦. Show that this satisfies the 

requirements of the continuity equation. 
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Solution. For two-dimensional flow of an incompressible fluid, the 

continuity equation simplifies to 
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 0 

∂𝑢

∂𝑥
= −1,

∂𝑣

∂𝑦
= 2, 

Therefore, 

∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= −2 + 2 = 0 

Which satisfies the requirement for continuity. Hence two-dimensional 

flow of an incompressible fluid. 

7.5 USE OF CYLINDRICAL POLAR  

      COORDINATES 

For an incompressible irrotational flow of uniform density, the 

equation of continuity 𝛥2𝜙 = 0 for the velocity potential 𝜙(𝑟, 𝜃, 𝑧) in 

cylindrical polar co-ordinates (𝑟, 𝜃, 𝑧) is 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜙

𝜕𝑟
) +

1

𝑟2

𝜕2𝜙

𝜕𝜃2
+

𝜕2𝜙

𝜕𝑧2
= 𝑂 (1) 

If the flow is two dimensional and the co-ordinate axes are to so choose that 

all physical quantities associated with the fluid are independent of 𝑧 then 

𝜙 = 𝜙(𝑟, 𝜃) 

∴ (1) becomes, 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜙

𝜕𝑟
) +

1

𝑟2

𝜕2𝜙

𝜕𝜃2
= 𝑂 (2) 

Let 𝜙(𝑟, 𝜃) = −𝑓(𝑟)𝑔(𝜃) be the solution of Equation (2) for separation of 

variables. 

Thus, we get 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                           120 
 

𝑔(𝜃)
1

𝑟

𝑑

𝑑𝑟
[𝑟𝑓′(𝑟)] +

1

𝑟2
𝑓(𝑟)𝑔′′(𝜃) = 0 (3) 

𝑟
𝑑
𝑑𝑟

[𝑟𝑓′(𝑟)]

𝑓(𝑟)
= −

𝑔′′(𝜃)

𝑔(𝜃)
 (4) 

Thus, L.H.S of Equation (4) is a function of 𝑟 only and RHS is a function 

of 𝜃 only. 

As r, 𝜃 are independent variables. So, each side of Equation (4) is a constant 

say 𝜆. 

𝑟2𝑓′′(𝑟) + 𝑟𝑓′(𝑟)

𝑓(𝑟)
= −

𝑔′′(𝜃)

𝑔(𝜃)
= 𝜆  

i.e., 𝑟2𝑓′′(𝑟) + 𝑟𝑓′(𝑟) − 𝜆𝑓(𝑟) = 0 (5) 

𝑔′′(𝜃) + 𝜆𝑔(𝜃) = 0 (6) 

Equation (6) has periodic solution when 𝜆 > 0 normally the physical 

problem requires that 𝑔(𝜃 + 2𝜋) = 𝑔(𝜃)and this is satisfied when 𝜆 = 𝑛2 

for 𝑛 = 1,2,3,⋯ 

The basic solution of Equation (6) are 

𝑔′′(𝜃) + 𝜆𝑔(𝜃) = 0 (7) 

 

Equation (5) is of Euler homogeneous type, and it is reduced to a linear 

different equation of constant co-efficient by putting 
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 

 

 

2

2 2

2

2

2 2 2

2
2

2

log

1

1
'

1 1 1
''

1 1

1 1

''

tr e

t r

dt

dr r

df df dt df
f r

dr dt dr r dt

d f d df d df df
f r

dr dr r dt r dr dt r dt

d df dt df

r dt dt dr r dt

d f df

r dt r dt

d f df
r f r

dt dt







    

   
       

   

  
   

  

 

 

 

Equation (5) reduces to 

𝑑2𝑓

𝑑𝑡2
−

𝑑𝑓

𝑑𝑡
+

𝑑𝑓

𝑑𝑡
− 𝑛2𝑓 = 0

𝑑2𝑓

𝑑𝑡2
− 𝑛2𝑓 = 0

 

Solution is 𝑓 = 𝑒±𝑛𝑡 = (𝑒𝑡)±𝑛 = 𝑟±𝑛 

𝑐3𝑟
𝑛 + 𝑐4𝑟

−𝑛 (8) 

A special solution of Equation (2) is obtained by Equation (7) and (8) as 

𝜙(𝑟, 𝜃) = −𝑓(𝑟)𝑔(𝜃)

𝜙(𝑟, 𝜃) = −(𝑐3𝑟
𝑛 + 𝑐4𝑟

−𝑛)(𝑐1𝑐𝑜𝑠 𝑛𝜃 + 𝑐2𝑠𝑖𝑛 𝑛)
 

(9) 

The most general solution is 

𝜙(𝑟, 𝜃) = − ∑  

∞

𝑛=1

(𝐴𝑛𝑟
𝑛 + 𝐵𝑛𝑟

−𝑛)(𝐶𝑛cos 𝑛𝜃 + 𝐷𝑛sin 𝑛𝜃) 
(10) 

Case, 

For 𝑛 = 0 we have, 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                           122 
 

𝑓 = 𝑘1 + 𝑘2𝑡 = 𝑘1 + 𝑘2𝑙𝑜𝑔 𝑟

𝑔 = 𝑘3 + 𝑘4𝜃
 

So, another solution of Equation (2) is 

𝜙(𝑟, 𝜃) = −(𝑘1 + 𝑘2𝑙𝑜𝑔 𝑟)(𝑘3 + 𝑘4𝜃) 

For 𝑛 = 1 

𝜙 = −𝑟cos 𝜃 𝜙 = −𝑟sin 𝜃

𝜙 = −𝑟−1cos 𝜃 𝜙 = −𝑟−1sin 𝜃
 

Discuss the uniform flow part as infinitely long circular cylinder. 

Let 𝑃 be a point with cylindrical polar co-ordinates (𝑟, 𝜃, 𝑧) in the flow 

region of an unbounded. 

Incompressible fluid of uniform density moving irrotationally with uniform 

velocity −𝑈𝑖 at infinity past the fixed solid cylinder 𝑟 ≤ 𝑎. 

When the cylinder 𝑟 = 𝑎 is introduced, it will produce a perturbation which 

is such as to satisfy Laplace equation and to become vanishingly small for 

large 𝑟. 

This suggests taking the velocity potential for 𝑟 ≤ 𝑎, 0 ≤ 0 ≤ 2𝜋 in the 

form 

𝜙(𝑟, 𝜃) = 𝑈𝑟𝑐𝑜𝑠 𝜃 − 𝐴𝑟−1𝑐𝑜𝑠 𝜃 
(11) 

Where the velocity potential of the uniform stream is 

𝑈𝑥 = 𝑈𝑟𝑐𝑜𝑠 𝜃 

and due to perturbation it is −𝐴𝑟−1𝑐𝑜𝑠 𝜃 which tends to zero as 𝑟 → ∞ and 

gives rise to a velocity pattern which is symmetrical about 𝜃 = 0, 𝜋 ( the 

term 𝑟−1𝑠𝑖𝑛 𝜃 is not there since it does not give symmetric flow) 
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As there is no flow across 𝑟 = 𝑎1 so the boundary condition on the surface 

is 

𝜕𝜙

𝜕𝑟
= 0  When 𝑟 = 𝑎

𝜙 = 𝑈𝑟𝑐𝑜𝑠 𝜃 − 𝐴𝑟−1𝑐𝑜𝑠 𝜃
𝜕𝜙

𝜕𝑟
= 𝑈𝑐𝑜𝑠 𝜃 + 𝐴𝑟−2𝑐𝑜𝑠 𝜃

When 𝑟 = 𝑎,
𝜕𝜙

𝜕𝑟
= 0,0 ≤ 𝜃 ≤ 2𝜋

0 = 𝑈 + 𝐴𝑎−2

0 = 𝑈𝑎2 + 𝐴
𝐴 = 𝑈𝑎2

 

Thus, velocity potential for an uniform flow part a fixed infinite cylinder is 

𝜙(𝑟, 𝜃) = 𝑈𝑟𝑐𝑜𝑠 𝜃 + 𝑈
𝑎2

𝑟
𝑐𝑜𝑠 𝜃 

= 𝑈𝑐𝑜𝑠 𝜃 (𝑟 +
𝑎2

𝑟
) → (3), 𝑟 > 𝑎, 0 ≤ 𝜃 ≤ 2𝜋 

From here, the cylindrical components of velocity are (q⃗ = ∇𝜙) 

𝑞𝑟 =
−𝜕𝜙

𝜕𝑟
= −𝑈𝑐𝑜𝑠 𝜃 [1 −

𝑎2

𝑟2
]

𝑞𝜃 =
−1

𝑟

𝜕𝜙

𝜕𝜃
=

−1

𝑟
𝑈𝑠𝑖𝑛 𝜃 [𝑟 +

𝑎2

𝑟
]

 

 = 𝑈𝑠𝑖𝑛 𝜃 (1 +
𝑎2

𝑟2
)

𝑞𝑥 =
−𝜕̂𝜙

𝜕𝑧
= 0

 

We note that as 𝑟 → ∞, 𝑞𝑟 = −𝑈𝑐𝑜𝑠 𝜃, 𝑞𝜃 = 𝑈𝑠𝑖𝑛 𝜃 which are consistent 

with the velocity at infinity −𝑈𝑖 of the uniform stream. 
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7.5.1 EXAMPLES BASED ON CYLINDRICAL POLAR  

          COORDINATES 

      

Example 5. Derive the equation of continuity in cylindrical coordinates. 

Solution. Consider a fluid particle at 𝑃 whose cylindrical coordinates are (𝑟, 𝜃, 𝑧), 

where 𝑟 ≥ 0,0 ≤ 𝜃 ≤ 2𝜋,−∞ < 𝑧 < ∞. 

Let 𝜌(𝑟, 𝜃, 𝑧, 𝑡) be the density of the fluid at 𝑃 at any time 𝑡. With 𝑃 as one corner 

construct a small curvilinear parallelepiped ( 𝑃𝑄𝑅𝑆, 𝑃′𝑄′𝑅′𝑆′ ) with its edges 

𝑆𝑆′ = 𝛿𝑟, arc 𝑆𝑃 = 𝑟𝛿𝜃 and 𝑃𝑄 = 𝛿𝑧. Let 𝑞𝑟, 𝑞𝜃 and 𝑞𝑧 be the velocity 

components in the direction of the elements 𝑆𝑆′, arc 𝑆𝑃 and 𝑃𝑄 respectively.  

 

Then, we have 

∴ Mass of the fluid that passes out through the opposite face 𝑃′𝑆′𝑅′𝑄′ 

Mass of the fluid that passes in through the face 𝑃𝑆𝑅𝑄 

                                 = 𝜌 ⋅ 𝑟𝛿𝜃𝛿𝑧 ⋅ 𝑞𝑟 per unit time = 𝑓(𝑟, 𝜃, 𝑧), say (1) 
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= 𝑓(𝑟 + 𝛿𝑟, 𝜃, 𝑧) per unit time = 𝑓(𝑟, 𝜃, 𝑧) + 𝛿𝑟
∂

∂𝑟
𝑓(𝑟, 𝜃, 𝑧) + ⋯ (2) 

(expanding by Taylor's theorem) 

∴ The net gain in mass per unit time within the chosen elementary parallelepiped 

( 𝑃𝑄𝑅𝑆, 𝑃′𝑄′𝑅′𝑆′ ) due to flow through the faces 𝑃𝑆𝑅𝑄 and 𝑃′𝑆′𝑅′𝑄′ by using 

(1) and (2) = Mass that enters in through the face 𝑃𝑄𝑅𝑆 - Mass that leaves 

through the face 𝑃′𝑄′𝑅′𝑆′ 

= 𝑓(𝑟, 𝜃, 𝑧) − [𝑓(𝑟, 𝜃, 𝑧) + 𝛿𝑟 ⋅
∂

∂𝑟
𝑓(𝑟, 𝜃, 𝑧) + ⋯ ] 

= −𝛿𝑟 ⋅
∂

∂𝑟
𝑓(𝑟, 𝜃, 𝑧), to the first order of approximation = −𝛿𝑟 ⋅

∂

∂𝑟
(𝜌𝑟𝛿𝜃𝛿𝑧𝑞𝑟), 

by equation (1) 

= −𝛿𝑟𝛿𝜃𝛿𝑧
∂(𝜌𝑟𝑞𝑟)

∂𝑟
 (3) 

Similarly, the net gain in mass per unit time within the element due to flow through 

the faces 𝑆𝑅𝑅′𝑆′ and 𝑄𝑃𝑃′𝑄′ 

= −𝛿𝑟𝛿𝜃𝛿𝑧
∂

∂𝜃
(𝜌𝑞𝜃) (4) 

and the net gain in mass per unit time within the element due to flow through the 

faces 𝑃𝑆′𝑃′ and 𝑄𝑅𝑅′𝑄′ 

= −𝛿𝑟𝛿𝜃𝛿𝑧
∂

∂𝑧
(𝜌𝑟𝑞𝑧) = −𝑟𝛿𝑟𝛿𝜃𝛿𝑧

∂(𝜌𝑞𝑧)

∂𝑧
 (5) 

∴ Total rate of mass flow into the chosen element 

= −𝛿𝑟𝛿𝜃𝛿𝑧 [
∂

∂𝑟
(𝜌𝑟𝑞𝑟) +

∂

∂𝜃
(𝜌𝑞𝜃) + 𝑟

∂

∂𝑧
(𝜌𝑞𝑧)] (6) 

Again, the mass of the fluid within the element at time 𝑡 = 𝜌𝑟𝛿𝑟𝛿𝜃𝛿𝑧 

∴ Total rate of mass increase within the element 
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=
∂

∂𝑡
(𝜌𝑟𝛿𝑟𝛿𝜃𝛿𝑧) = 𝑟𝛿𝑟𝛿𝜃𝛿𝑧

∂𝜌

∂𝑡
 (7) 

Suppose that the chosen region of the element of the fluid contains neither sources 

nor sinks. Then by the law of conservation of the fluid mass, the rate of increase 

of the mass of the fluid within the element must be equal to the rate of mass flowing 

into the element. Hence from (6) and (7), we have 

𝑟𝛿𝑟𝛿𝜃𝛿𝑧
∂𝜌

∂𝑡
= −𝛿𝑟𝛿𝜃𝛿𝑧 [

∂

∂𝑟
(𝜌𝑟𝑞𝑟) +

∂

∂𝜃
(𝜌𝑞𝜃) + 𝑟

∂

∂𝑧
(𝜌𝑞𝑧)] 

or              
∂𝜌

∂𝑡
+

1

𝑟

∂

∂𝑟
(𝜌𝑟𝑞𝑟) +

1

𝑟

∂

∂𝜃
(𝜌𝑞𝜃) +

1

∂𝑧
(𝜌𝑞𝑧) = 0, 

(8) 

which is the desired equation of continuity in cylindrical coordinates, and it holds 

at all points of the fluid free from sources and sinks. 

Example 6. A mass of fluid is in motion so that the lines of motion lie on the 

surface of co-axial cylinders. Show that the equation of continuity is 

∂𝜌

∂𝑡
+

1

𝑟

∂

∂𝜃
(𝜌𝑢) +

∂

∂𝑧
(𝜌𝑣) = 0, 

where 𝑢, 𝑣 are the velocity perpendicular and parallel to 𝑧. 

Solution. Consider a fluid particle 𝑃, whose cylindrical coordinates are (𝑟, 𝜃, 𝑧). 

With 𝑃 as one corner construct an element (curvilinear parallelepiped 

𝑃𝑄𝑅𝑆, 𝑃′𝑄′𝑅′𝑆′ ) with edges 

𝑃𝑄 = 𝛿𝑟 𝑃𝑆 = 𝑟𝛿𝜃 and 𝑃𝑃′ = 𝛿𝑧. 
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Let 𝜌 be the density of the fluid at 𝑃. 

Since the lines of motion lie on the surface of co-axial 

cylinder, there is no motion along 𝑃𝑄. 

Hence the rate of the excess of the flow-in overflow-out 

along 𝑃𝑄 vanishes.  

 

 

 

Again, we have 

Rate of excess of flow-in over flow-out along 𝑃𝑆 = −𝑟𝛿𝜃
∂

𝑟 ∂𝜃
(𝜌𝑢𝛿𝑟𝛿𝑧) 

Rate of excess of flow-in over flow-out along 𝑃𝑃′ = −𝛿𝑧
∂

∂𝑧
(𝜌𝑣𝑟𝛿𝜃𝛿𝑟) 

Again, the rate of increase in mass of the element =
∂

∂𝑡
(𝜌𝑟𝛿𝜃𝛿𝑟𝛿𝑧) 

Hence the equation of continuity is given by 

∂

∂𝑟
(𝜌𝑟𝛿𝜃𝛿𝑟𝛿𝑧) = −𝛿𝜃

∂

∂𝜃
(𝜌𝑢𝛿𝑟𝛿𝑧) − 𝛿𝑧

∂

∂𝑧
(𝜌𝑣𝑟𝛿𝜃𝛿𝑟) 

or 

𝑟𝛿𝜃𝛿𝑟𝛿𝑧
∂𝜌

∂𝑡
+ 𝛿𝑟𝛿𝜃𝛿𝑧

∂

∂𝜃
(𝜌𝑢) + 𝑟𝛿𝛿𝛿𝜃𝛿𝑧

∂

∂𝑧
(𝜌𝑣) = 0 

or 

∂𝜌

∂𝑡
+

1

𝑟

∂

∂𝜃
(𝜌𝑢) +

∂

∂𝑧
(𝜌𝑣) = 0. 
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7.6 SUMMARY 

 This unit explains the following topics: 

(i) Definition of Two-Dimensional Flow. 

(ii) Cylindrical Polar Coordinates. 

 

7.7 GLOSSARY 

(i) Fluid 

(ii) Two-Dimensional Flow 

(iii) Cylindrical Polar Coordinates 
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(i) M. D. Raisinghanai (2013), Fluid Dynamics, S. Chand & 
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(iii) John Cimbala and Yunus A Çengel (2019), Fluid Mechanics: 
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(iv) P.K. Kundu, I.M. Cohen & D.R. Dowling (2015), Fluid 
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3rd edition. 
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7.9 TERMINAL QUESTIONS 

 

1. Given a velocity field 2  and 2u x v y    show that it satisfies 

the continuity equation. 

2. Consider a velocity field u = −y and v = x. Determine if this 

velocity field satisfies the continuity equation. 

3. Given a velocity field u = x+y and v = 2x−y, verify if it satisfies 

the continuity equation. 

4. Define two-dimensional flow in fluid dynamics. 

5. Explain the use of cylindrical polar coordinates in studying 

fluid flow. 

6. Write the relation between cartesian coordinate system and 

cylindrical polar coordinate system. 

Solution:   
𝑥 = 𝑟cos (𝜃)
𝑦 = 𝑟sin (𝜃)

𝑧 = 𝑧

 

7. How does the continuity equation in cylindrical coordinates 

simplify for incompressible, axisymmetric flow? 

Solution: 
1

𝑟

∂(𝑟𝑢𝑟)

∂𝑟
+

∂𝑢𝑧

∂𝑧
= 0. 
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UNIT 8: THE STREAM FUNCTION 

 

CONTENTS: 

8.1 Introduction of stream function 

8.2 Objectives 

8.3 Stream function and their property  

8.3.1 Stream function 

8.3.2 Physical significance of stream function 

8.3.3 Spin components in terms of stream function 𝜓 

8.3.4 Some aspects of elementary theory of functions of a 

complex variables 

8.4 Complex potential 

 8.4.1 Cauchy-Riemann equations in polar form 

 8.4.2 Example based on stream function 

8.5 Summary 

8.6 Glossary 

8.7 References and Suggested Readings 

8.8 Terminal questions 
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8.1 INTRODUCTION 

 

In fluid mechanics, the concepts of stream function play crucial 

roles in the analysis and understanding of fluid flow patterns. The stream 

function is a mathematical tool used to visualize and describe the flow field 

by representing the streamline flow, which is the paths traced by fluid 

particles as they move through the flow. It provides information about the 

direction, convergence, divergence, and circulation of the flow. 

 So, this unit begins by introducing the stream function with their 

property, leads to the definition of the complex potential.   

 

8.2 OBJECTIVES 

 

 After completion of this unit learners will be able to: 

(i) Define the concept of stream function. 

(ii) Describe the physical significance of stream function. 

(iii) Describe the elementary theory of functions of a complex variable 

(iv) Define the Complex Potential 

(v) Derive the Cauchy-Riemann Equations in polar form 

 

8.3 STREAM FUNCTION AND THEIR 

PROPERTY 

 

 

8.3.1 STREAM FUNCTION 

In fluid dynamics, the stream function is a mathematical concept 

used to describe the flow field of an incompressible fluid. It is a scalar field 

that represents the streamlines of the fluid flow. 

https://testbook.com/physics/streamline-flow
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Let 𝑢 and 𝑣 be the components of velocity in two-dimensional 

motion. Then the differential equation of lines of flow or streamline is 

𝑑𝑥/𝑢 = 𝑑𝑦/𝑣  or  𝑣𝑑𝑥 − 𝑢𝑑𝑦 = 0          (8.1) 

and the equation of continuity is 

∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 0  or  

∂𝑣

∂𝑦
=

∂(−𝑢)

∂𝑥
         (8.2) 

(8.2) shows that L.H.S. of (8.1) must be an exact differential, 𝑑𝜓 (say). 

Thus, we have 

𝑣𝑑𝑥 − 𝑢𝑑𝑦 = 𝑑𝜓 = (𝑑𝜓/ ∂𝑥)𝑑𝑥 + (∂𝜓/ ∂𝑦)𝑑𝑦                           (8.3) 

so that      𝑢 = − ∂Ψ/ ∂𝑦     and       𝑣 = ∂Ψ/ ∂𝑥                                  (8.4) 

This function 𝜓 is known as the stream function. Then using (8.1) 

and (8.3), the streamlines are given by 𝑑𝜓 = 0 i.e., by the equation 𝜓 = 𝑐, 

where 𝑐 is an arbitrary constant. Thus, the stream function is constant along 

a streamline. Clearly the current function exists by virtue of the equation of 

continuity and incompressibility of the fluid.  

8.3.2 PHYSICAL SIGNIFICANCE OF STREAM 

FUNCTION 

Let 𝐿𝑀 be any curve in the 𝑥 − 𝑦 plane and let 𝜓1 and Ψ2 be the 

stream functions at 𝐿 and 𝑀 respectively. Let 𝑃 be an arbitrary point on 𝐿𝑀 

such that arc 𝐿𝑃 = 𝑠 and let 𝑄 be a neighbouring point on 𝐿𝑀 such that arc 

𝐿𝑄 = 𝑠 + 𝛿𝑠. Let 𝜃 be the angle between tangent at 𝑃 and the 𝑥-axis. If 𝑢 

and be the velocity-components at 𝑃, then velocity at 𝑃 along inward drawn 

normal 𝑃𝑁  = cos 𝜃 − 𝑢sin 𝜃           (8.5) 

When 𝜓 is the stream function, then we have 

𝑢 = − ∂𝜓/ ∂𝑦       and       𝑣 = ∂𝜓/ ∂𝑥           (8.6) 
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Also from Calculus, 

cos 𝜃 = 𝑑𝑥/𝑑𝑠  and  sin 𝜃 = 𝑑𝑦/𝑑𝑠        (8.7) 

Using (8.5), we get flux across 𝑃𝑄 from right to left = (cos 𝜃 − 𝑢sin 𝜃)𝛿𝑠 

∴ Total flux across curve 𝐿𝑀 from right to left 

 = ∫  
LM

  (cos 𝜃 − 𝑢sin 𝜃)𝑑𝑠 = ∫  
LM

  (
∂𝜓

∂𝑥

𝑑𝑥

𝑑𝑠
+

∂𝜓

∂𝑦

𝑑𝑦

𝑑𝑠
) 𝑑𝑠, using (8.6) and (8.7) 

 = ∫  
LM

  (
∂𝜓

∂𝑥
𝑑𝑥 +

∂𝜓

∂𝑦
𝑑𝑦) = ∫  

𝜓2

𝜓1

 𝑑𝜓 = 𝜓2 − Ψ1

 

One characteristic of the stream function is that the flow across any 

line that connects two places is represented by the difference of their values 

at those points. 

 

Important Note: 

1. If the stream function exists, it is a possible case of fluid flow satisfies 

continuity equation which may be rotational flow or irrotational flow. 

2. If the stream function satisfies the Laplace equation, it is a case of steady 

irrotational flow. 

3. Stream function represents streamline and it is constant along streamline. 
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4. The difference between any two stream function give discharge per unit 

depth.  

 

8.3.3 SPIN COMPONENTS IN TERMS OF STREAM 

FUNCTION 𝝍 

 We know that the velocity components 𝑢 and are functions of 𝑥, 𝑦 

and 𝑡 and 𝑤 = 0 in twodimensional flow. Hence the spin components 

(𝜉, 𝜂, 𝜁 ) are given by 

 

2𝜉 =
∂𝑤

∂𝑦
−

∂

∂𝑧
= 0          2𝜂 =

∂𝑢

∂𝑧
−

∂𝑤

∂𝑥
= 0 

and                    2𝜁 =
∂

∂𝑥
−

∂𝑢

∂𝑦
=

∂

∂𝑥
(

∂𝜓

∂𝑥
) −

∂

∂𝑦
(−

∂𝜓

∂𝑦
) =

∂2𝜓

∂𝑥2 +
∂2𝜓

∂𝑦2 

Let the motion be irrotational so that 𝜁 = 0 also. Then we obtain 

∂2Ψ/ ∂𝑥2 + ∂2𝜓/ ∂𝑦2 = 0  or  ∇2𝜓 = 0 

showing that Ψ satisfies Laplace's equation. 

 

8.3.4 SOME ASPECTS OF ELEMENTARY THEORY OF 

FUNCTIONS OF A COMPLEX VARIABLES 

 Suppose that  𝑧 = 𝑥 + 𝑖𝑦 and that  𝑤 = 𝑓(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖𝜓(𝑥, 𝑦) 

where 𝑥, 𝑦, 𝜙, 𝜓 are all real and 𝑖 = √−1. Also, suppose that 𝜙 and 𝜓 and 

their first derivatives are everywhere continuous within a given region. If at 

any point of the region specified by 𝑧 the derivative 𝑑𝑤/𝑑𝑧(= 𝑓′(𝑧)) is 

unique, then 𝑤 is said to be analytic or regular at that point. If the derivative 

is unique throughout the region, then 𝑤 is said to be analytic or regular 

throughout the region. It can be shown that the necessary and sufficient 

conditions for 𝑤 to be analytic at 𝑧 are 

∂𝜙/ ∂𝑥 = ∂𝜓/ ∂𝑦  and   ∂𝜙/ ∂𝑦 = − ∂𝜓/ ∂𝑥 
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which are known as the Cauchy-Riemann equations. The functions 𝜙, 𝜓 are 

known as conjugate functions. 

8.4 COMPLEX POTENTIAL 

 

Let 𝑤 = 𝜙 + 𝑖𝜓 be taken as a function of 𝑥 + 𝑖𝑦 𝑖. 𝑒, , z Thus, 

suppose that 𝑤 = 𝑓(𝑧)𝑖. 𝑒. 

𝜙 + 𝑖𝜓 = 𝑓(𝑥 + 𝑖𝑦)                                                         (8.8) 

Differentiating (8.8) w.r.t, 𝑥 and 𝑦 respectively, we get 

∂𝜙/ ∂𝑥 + 𝑖(∂𝜓/ ∂𝑥) = 𝑓′(𝑥 + 𝑖𝑦)                                         (8.9) 

and 

∂𝜙/ ∂𝑦 + 𝑖(∂𝜓𝜓/ ∂𝑦) = 𝑖𝑓′(𝑥 + 𝑖𝑦) 

or 

∂𝜙/ ∂𝑦 + 𝑖(∂𝜓/ ∂𝑦) = 𝑖{∂𝜙/ ∂𝑥 + 𝑖(∂𝜓/ ∂𝑥)}, by (8.9)  

Equating real and imaginary parts, we get 

∂𝜙/ ∂𝑥 = ∂𝜓/ ∂𝑦 and ∂𝜙/ ∂𝑦 = − ∂̂Ψ/ ∂𝑥 

which is Cauchy-Riemann equations. Then 𝑤 is an analytic function of 𝑧 

and 𝑤 is known as the complex porential. 

Conversely, if 𝑤 is an analytic function of 𝑧, then its real part is the 

velocity potential and imaginary part is the stream function of an irrotational 

two-dimensional motion. 

 

8.4.1 CAUCHY-RIEMANN EQUATIONS IN POLAR FORM 

  

Let   𝜙 + 𝑖𝜓 = 𝑓(𝑧) = 𝑓(𝑛′𝜃)                                                          (8.10) 

Differentiating (8.10) w.r.t. 𝑟 and 𝜃, we get 

∂𝜙

∂𝑟
+ 𝑖

∂𝜓

∂𝑟
= 𝑓′(𝑟𝑒3𝜃) ⋅ 𝑒𝑗𝜃                                          (8.11) 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                           136 
 

and   
∂𝜙

∂𝜃
+ 𝑖

∂𝜓

∂𝜃
= 𝑓′(𝑟𝑒𝑖𝜃) ⋅ 𝑟𝑖𝑒𝑖𝜃                                  (8.12) 

 

From (8.11) and (8.12), we easily obtain 

∂𝜙

∂𝜃
+ 𝑖

∂𝜓

∂𝜃
= 𝑖𝑟 (

∂𝜙

∂𝑟
+ 𝑖

∂𝜓

∂𝑟
) 

Equating real and imaginary parts, we get 

∂𝜙

∂𝜃
= −𝑟

∂𝜓

∂𝑟
   and    

∂𝜓

∂𝜃
= 𝑟

∂𝜙

∂𝑟
 

  

Thus,            
∂𝜙

∂𝑟
=

1

𝑟

∂𝜓

∂𝜃
                 and       

1

𝑟

∂𝜙

∂𝜃
 = −

∂𝜓

∂𝑟
 (8.13) 

which are Cauchy-Riemann equations in polar form. 

 

8.4.2 EXAMPLES BASED ON STREAM FUNCTION 

Example 1. If 𝜙 = 𝐴(𝑥2 − 𝑦2) represents a possible flow phenomenon, 

determine the stream function, 

Solution.  Here   𝜙 = 𝐴(𝑥2 − 𝑦2)                                                            (8.14) 

∴  ∂Ψ/ ∂𝑦 = ∂𝜙/ ∂𝑥 = 2𝐴𝑥,  using (8.14) 

Integrating it w.r.t. ' 𝑦 ',     𝜓 = 2𝐴𝑥𝑦 + 𝑓(𝑥),      (8.15) 

where 𝑓(𝑥) is an arbitrary function of 𝑥. (8.15) gives the required stream 

function. 

 

Example 2. Determine the stream function 𝜓(𝑥, 𝑦, 𝑡) for the given velocity 

field  𝑢 = 𝑈𝑡,  𝑣 = 𝑥, 

Solution. We know that 𝑢 = −(∂𝜓/ ∂𝑦)  and  𝑣 = (∂𝜓/ ∂𝑥)  

∂𝜓/ ∂𝑦 = −𝑈𝑡.                 (8.16) 

and              ∂𝜓/ ∂𝑥 = 𝑥       (8.17) 
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Integrating (8.16),   Ψ(𝑥, 𝑦, 𝑡) = −𝑈𝑡𝑦 + 𝑓(𝑥, 𝑡).    (8.18)  

Where 𝑓(𝑥, 𝑡) is an arbitrary function of 𝑥 and 𝑡. 

From (8.18),    ∂Ψ/ ∂𝑥 = ∂𝑓/ ∂𝑥         (8.19) 

Then (8.17) and (8.19)    
∂𝑓

∂𝑥
= 𝑥        (8.20) 

Integrating (8.20)   𝑓(𝑥, 𝑡)  = 𝑥2/2 + 𝐹(𝑡)     (8.21) 

where 𝐹(𝑡) is an arbitrary function of 𝑡. 

From (8.18) and (8.21),   Ψ(𝑥, 𝑦, 𝑡) = −𝑈𝑡𝑦 + 𝑥2/2 + 𝐹(𝑡). 

Example 3.  The function for a two-dimensional flow is 𝜙 = 𝑥(2𝑦 − 1). 

At a point 𝑃(4,5) determine the value of stream function.  

Solution. Given 𝜙 = 2𝑥𝑦 − 𝑥.        (8.22) 

Then  𝑢 = − ∂𝜙̂/ ∂𝑥 = −2𝑦 + 1  and  𝑣 = − ∂𝜙̂/ ∂y = −2𝑥.    (8.23) 

 Now,  𝑢 = − ∂𝜓/ ∂𝑦  and  𝑣 = ∂𝜓/ ∂𝑥.      (8.24) 

From (8.23) and (8.24),  ∂𝜓/ ∂𝑥 = −2𝑥  and  ∂𝜓/ ∂𝑦 = 2𝑦 − 1. 

Now,  𝑑𝜓 = (∂𝜓/ ∂𝑥)𝑑𝑥 + (∂𝜓/ ∂𝑦)𝑑𝑦 = −2𝑥𝑑𝑥 + (2𝑦 − 1)𝑑𝑦. 

Integrating,  𝜓 = −𝑥2 + 𝑦2 − 𝑦 + 𝐶, 𝐶 being constant of integration.  

For 𝜓 = 0 at the origin, we have Hence  0 = 0 + 𝐶     or         𝐶 = 0.  

Hence     Ψ = −𝑥2 + 𝑦2 − 𝑦 

At the point 𝑃(4,5),  𝜓 = −42 + 52 − 5 = 4 units. 

 

Example 4. Show that 𝑢 = 2𝑐𝑥𝑦,  = 𝑐(𝑎2 + 𝑥2 − 𝑦2) are the velocity 

components of a possible fluid motion. Determine the stream function. 

Solution. Given 𝑢 = 2𝑐𝑥𝑦, 𝑣 = 𝑐(𝑎2 + 𝑥2 − 𝑦2)    (8.25) 

Equation of continuity in 𝑥𝑦-plane is given by 

∂𝑢/ ∂𝑥 + ∂𝑣/ ∂𝑦 = 0      (8.26) 
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From (8.25), ∂𝑢/ ∂𝑥 = 2𝑐𝑦 and ∂𝑣/ ∂𝑦 = −2𝑐𝑦. Putting these values in 

(8.26) we get 0 = 0, showing (8.26) is satisfied by 𝑢, given by (8.25). Hence 

𝑢 and constitute a possible fluid motion.  

Let 𝜓 be the required stream function. Then, we have 

𝑢 = −(∂𝜓/ ∂𝑦) or ∂𝜓/ ∂𝑦 = −2𝑐𝑥𝑦                       (8.26) 

and  𝑣 = ∂𝜓/ ∂𝑥 or ∂𝜓/ ∂𝑥 = 𝑐(𝑎2 + 𝑥2 − 𝑦2)      (8.27) 

Integrating (8.26) partially w.r.t. ' 𝑦 '          𝜓 = −𝑐𝑥𝑦2 + 𝜙(𝑥, 𝑡)   (8.28) 

where 𝜙(𝑥, 𝑡) is an arbitrary function of 𝑥 and 𝑡.  

Differentiating (8.28) partially w.r.t. ' 𝑥 ', 

∂𝜓/ ∂𝑥 = −𝑐𝑦2 + ∂𝜙/ ∂𝑥      (8.29) 

(8.27) and (8.29) ⇒  − 𝑐𝑦2 + ∂𝜙/ ∂𝑥 = 𝑐(𝑎2 + 𝑥2 − 𝑦2)  

or   ∂𝜙/ ∂𝑥 = 𝑐(𝑎2 + 𝑥2)    (8.30)  

Integrating (8.30) partially w.r.t. ' 𝑥 ',  𝜙(𝑥, 𝑡) = 𝑐(𝑎2𝑥 + 𝑥3/3) + 𝜓(𝑦, 𝑡), 

where 𝜓(𝑦, 𝑡) is an arbitrary function of 𝑦 and 𝑡.  

Substituting the above value of 𝜙(𝑥, 𝑡) in (8.28), we get  

𝜓 = 𝑐(𝑎𝑥2 + 𝑥3/3 − 𝑥𝑦2) + 𝜓(𝑦, 𝑡),  

which is the required stream function. 

 

Example 5. Show that 𝑢 = −𝜔𝑦,  = 𝜔𝑥, 𝑤 = 0 represents a possible 

motion of inviscid fluid. Find the stream function and sketch stream lines. 

Solution. Given   𝑢 = −𝜔𝑦, 𝑣 = 𝜔𝑥 and 𝑤 = 0   (8.31) 

(8.31) ⇒ ∂𝑢/ ∂𝑥 = 0 = ∂𝑣/ ∂𝑦. Hence the equation of continuity 

∂𝑢/ ∂𝑥 + ∂𝑣/ ∂𝑦 = 0 is satisfied. Hence these exist a two-dimensional 

motion defined by (8.31).  

Now,  ∂𝜓 = (∂𝜓/ ∂𝑥)𝑑𝑥 + (∂𝜓/ ∂𝑦)𝑑𝑦     (8.32) 

But  
∂𝜓

∂𝑥
= −

∂𝜙

∂𝑦
== 𝜔𝑥 and 

∂Ψ

∂𝑦
=

∂𝜙

∂𝑥
= −𝑢 = 𝜔𝑦   (8.33) 
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∴ (8.33) reduces to 𝑑𝜓 = 𝜔𝑥𝑑𝑥 + 𝜔𝑦𝑑𝑦 = 𝑑{𝜔(𝑥2 + 𝑦2)/2} 

Integrating, Ψ = 𝜔(𝑥2 + 𝑦2)/2 + 𝑐, where 𝑐 is an arbitrary constant. 

The required streamlines are given by Ψ = constant = 𝑐′, say  

i.e.,  𝑐′ = 𝜔(𝑥2 + 𝑦2)/2 + 𝑐  or  𝑥2 + 𝑦2 = 2(𝑐′ − 𝑐)/𝑤 = 𝑎2, say 

Hence the required streamlines are concentric circles with centres 

at origin as shown in the adjoining figure. 

 

 

Example 6.  To shows that the family of curves 𝜙(𝑥, 𝑦) = 𝑐1 and 𝜓(𝑥, 𝑦) =

𝑐2; 𝑐1, 𝑐2 being constants, cut orthogonally at their points of intersection. 

Solution. Let the curves of constant velocity potential and constant stream 

function be given by and 

 
𝜙(𝑥, 𝑦) = 𝑐1                                                          (8.34) 

 
𝜓(𝑥, 𝑦) = 𝑐2                                                          (8.35) 

where 𝑐1 and 𝑐2 are arbitrary constants.  
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Let 𝑚1 and 𝑚2 be gradients of tangents 𝑃𝑇1 and 𝑃𝑇2 at point of intersection 

𝑃 of (8.34) and (8.35). Then, we have 

𝑚1 = −
∂𝜙/∂𝑥

∂𝜙/∂𝑦
  and  𝑚2 = −

∂𝜓/∂𝑥

∂𝜓/∂𝑦
  (8.36) 

We know that 𝜙 and 𝜓 satisfy the Cauchy-Riemann equations, namely, 

 ∂𝜙/ ∂𝑥 = ∂𝜓/ ∂𝑦  and  ∂𝜙/ ∂𝑦 = − ∂𝜓/ ∂𝑥.     (8.37) 

Now, from (8.36), 

𝑚1𝑚2 =
(∂𝜙/∂𝑥)(∂𝜓/∂𝑥)

(∂𝜙/∂𝑦)(∂𝜓/∂𝑦)
=

(∂𝜓/∂𝑦)(∂𝜓/∂𝑥)

−(∂𝜓/∂𝑥)(∂𝜓/∂𝑦)
, by (8.37)  

Hence 𝑚1𝑚2 = −1, showing that the curves (1) and (2) cut each other 

orthogonally. 

 

Example 7. The streamlines are represented by (a) 𝜓 = 𝑥2 − 𝑦2 and (b) 

𝜓 = 𝑥2 + 𝑦2 Then (i) determine the velocity and its direction at (2,2), (𝑖𝑖) 

sketch the streamlines and show the direction of flow in each case. 

Solution. Part (a) Given that 𝜓 = 𝑥2 − 𝑦2. Now, 𝑢 = ∂𝜓/ ∂𝑦 = −2𝑦 

and 𝑣 = − ∂𝜓/ ∂𝑥 = −2𝑥 

At (2,2), 𝑢 = −4, v = −4. 
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∴ The resultant velocity = (𝑢2 + 𝑣 2)1/2 = (16 + 16)1/2 = 4√2 units 

and its direction has a slope = v/𝑢 = 1 showing that the velocity vector is 

inclined at 45∘ to 𝑥-axis. 

The required streamlines are given by 𝜓 = 𝑐, where 𝑐 is a constant, i.e. 

𝑥2 − 𝑦2 = 𝑐, which represents a family of hyperbolas. In figure, we have 

sketched the steamlines for various values of 𝜓. The direction of 

arrowhead shows the direction of flow in each case. 

 

Part (b) Given that  Ψ = 𝑥2 + 𝑦2 

Now,  𝑢 = ∂̂𝜓/ ∂𝑦 = 2𝑦,  v = − ∂𝜓/ ∂𝑥 = −2𝑥. 

At (2,2),  𝑢 = 4  and  v = −4. 

∴ The resultant velocity is (𝑢2 +  𝑣2)1/2 = (16 + 16)1/2 =

4√2 units, and its direction has a slope = v/𝑢 = −1, showing that the 

velocity vector is inclined at 135∘ to 𝑥-axis. 

The required streamlines are given by 𝜓 = 𝑐, where 𝑐 is a constant, i.e. 

𝑥2 + 𝑦2 = 𝑐, which represents a family of circles. In figure, we have 

sketched the streamlines for various values of 𝜓. The direction of 

arrowhead shows the direction of flow in each case. 
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Example 8. If 𝜙 = 3𝑥𝑦, find 𝑥 and 𝑦 components of velocity at (1,3) and 

(3,3). Determine the discharge passing between streamlines passing 

through these points. 

Solution. The velocity components 𝑢 and in 𝑥 and 𝑦 directions are given 

by 

𝑢 = − ∂𝜙/ ∂𝑥 = −3𝑦  and  v = − ∂𝜙/ ∂𝑦 = −3𝑥 

Hence the velocity components at (1,3) are 

𝑢 = −9,  v = −3 

and the velocity components at (3,3) are 

𝑢 = −9,  v = −9 

Now, we have and 𝑢 =
∂𝜓

∂𝑦
, v = − ∂𝜓/ ∂𝑥. 

⇒  ∂𝜓/ ∂𝑦 = −3𝑦  and  ∂𝜓/ ∂𝑥 = 3𝑥. 

𝑑𝜓 = (∂𝜓/ ∂𝑥)𝑑𝑥 + (∂𝜓/ ∂𝑦)𝑑𝑦 = 3𝑥𝑑𝑥 − 3𝑦𝑑𝑦 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                           143 
 

Integrating,  𝑦 = (3𝑥2/2) − (3𝑦2/2) + 𝐶, where 𝐶 is constant of 

integration. 

Discharge between the streamlines passing through (1,3) and (3,3) 

= 𝜓(1,3) − 𝜓(3,3) = (3/2) × (1 − 9) − (3/2) × (9 − 9) = −12 units.  

 

Example 9. If the expression for stream function is described by 

 𝜓 = 𝑥3 − 3𝑥𝑦2, determine whether flow is rotational or irrotational. If 

the flow is irrotational, then indicate the correct value of the velocity 

potential. 

(a) 𝜙 = 𝑦3 − 3𝑥2𝑦 

(b) 𝜙 = −3𝑥2𝑦. 

Solution. Now 𝑢 = ∂𝜓/ ∂𝑦 = −6𝑥𝑦, v = − ∂𝜓/ ∂𝑥 = −3(𝑥2 − 𝑦2) 

Hence, ∂v/ ∂𝑥 = −6𝑥 and ∂u/ ∂𝑦 = −6𝑥 

A two-dimensional flow in 𝑥𝑦-plane will be irrotational if the vorticity 

vector component Ω𝑧 in the 𝑧-direction is zero. 

Here Ω𝑧 = (∂v/ ∂𝑥) − (∂𝑢/ ∂𝑦) = −6𝑥 − (−6𝑥) = 0 

Hence the flow is irrotational. 

Now, 𝑢 = − ∂𝜙/ ∂𝑥 and v = − ∂𝜙/ ∂𝑦 

For an irrotational flow Laplace equation in 𝜙 must be satisfied,  

i.e. (∂2𝜙/ ∂𝑥2) + (∂2𝜙/ ∂𝑦2) = 0. 

We now check the validity of each given value of 𝜙. 

(a) Given 𝜙 = 𝑦3 − 3𝑥2𝑦 ⇒  ∂2𝜙/ ∂𝑥2 = −6𝑦 and ∂2𝜙/ ∂𝑦2 = 6𝑦 

∴ (∂2𝜙/ ∂𝑥2) + (∂2𝜙/ ∂𝑦2) = −6𝑦 + 6𝑦 = 0. 
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(b) Given 𝜙 = −3𝑥2𝑦 ⇒  ∂2𝜙/ ∂𝑥2 = −6𝑦 and ∂2𝜙/ ∂𝑦2 = 0 

∴ (∂2𝜙/ ∂𝑥2) + (∂2𝜙/ ∂𝑦2) = −6𝑦 + 0 ≠ 0. 

Hence the correct value of 𝜙 is given by 𝜙 = 𝑦3 − 3𝑥2𝑦 

 

Example 10. In a two-dimensional incompressible flow, the fluid velocity 

components are given by 𝑢 = 𝑥 − 4𝑦 and = −𝑦 − 4𝑥. Show that velocity 

potential exists and determine its form as well as stream function. 

Solution. Given 𝑢 = 𝑥 − 4𝑦 and v = −𝑦 − 4𝑥 

The velocity potential will exist if flow is irrotational. Therefore, the 

vorticity component Ω𝑧 in the 𝑧-direction must be zero. 

Here Ω𝑧 = (∂v/ ∂𝑥) − (∂𝑢/ ∂𝑦) = −4 − (−4) = 0,  

Here the vorticity being zero, the flow is irrotational and so the velocity 

potential 𝜙 exists. 

Now, we have 𝑑𝜙 = (∂𝜙/ ∂𝑥)𝑑𝑥 + (∂𝜙/ ∂𝑦)𝑑𝑦 = −𝑢𝑑𝑥 − v 𝑑𝑦  

or 

𝑑𝜙 = −(𝑥 − 4𝑦)𝑑𝑥 − (−𝑦 − 4𝑥)𝑑𝑦 = −𝑥𝑑𝑥 + 𝑦𝑑𝑦 + 4(𝑦𝑑𝑥 + 𝑥𝑑𝑦) 

Integration, 𝜙 = −(𝑥2/2) + 𝑦2/2 + 4𝑥𝑦 + 𝐶, where 𝐶 is constant of 

integration. 

If 𝜙 = 0 at the origin, then, we find 𝐶 = 0.  

Hence 𝜙 = (𝑦2 − 𝑥2)/2 + 4𝑥𝑦 

 

Example 11. Find the stream function 𝜓 for a given velocity potential 

𝜙 = 𝑐𝑥, where 𝑐 is a constant. Also, draw a set of steamlines and 
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equipotential lines. 

Solution. The velocity components 𝑢 and in 𝑥 and 𝑦 directions are given 

by 𝑢 = − ∂𝜙/ ∂𝑥 = −𝑐  and  v = − ∂𝜙/ ∂𝑦 = 0. 

∴ 𝑢 = − ∂𝜓/ ∂𝑦 and  v = ∂𝜓/ ∂𝑥 

⇒  ∂𝜓/ ∂𝑦 = 𝑐  and  ∂𝜓/ ∂𝑥 = 0. 

Then,  𝑑𝜓 = (∂𝜓/ ∂𝑥)𝑑𝑥 + (∂𝜓/ ∂𝑦)𝑑𝑦 = 𝑐𝑑𝑦. 

Integrating, 𝜓 = 𝑐𝑦 + 𝑑, 

where 𝑑 is constant of integration. 

Now, 𝜙 = constant ⇒  𝑐𝑥 = constant  ⇒  𝑥 = constant, showing that the 

lines of equipotential are parallel to 𝑦-axis. 

Next,  𝜓 = constant  ⇒  𝑐𝑦 + 𝑑 = constant  ⇒  𝑦 = constant, showing 

that the streamlines are parallel to 𝑥-axis as shown in the figure. 

 

 

Example 12. Show that 𝑢 = 2𝑐𝑥𝑦,  = 𝑐(𝑎2 + 𝑥2 − 𝑦2) are the velocity 

components of a possible fluid motion. Determine the stream function. 

Solution. Given 𝑢 = 2𝑐𝑥𝑦,  = 𝑐(𝑎2 + 𝑥2 − 𝑦2) 

Equation of continuity in 𝑥𝑦-plane is given by ∂𝑢/ ∂𝑥 + ∂v/ ∂𝑦 = 0 
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From, ∂𝑢/ ∂𝑥 = 2𝑐𝑦 and ∂v/ ∂𝑦 = −2𝑐𝑦. Putting these values, we get 

0 = 0, showing equation of continuity is satisfied by 𝑢. Hence 𝑢 and 

constitute a possible fluid motion. 

Let 𝜓 be the required stream function. Then, we have 𝑢 = −(∂𝜓/ ∂𝑦) or 

∂𝜓/ ∂𝑦 = −2𝑐𝑥𝑦 and = ∂𝜓/ ∂𝑥 or ∂𝜓/ ∂𝑥 = 𝑐(𝑎2 + 𝑥2 − 𝑦2) 

Integrating partially w.r.t. ' 𝑦 ', 𝜓 = −𝑐𝑥𝑦2 + 𝜙(𝑥, 𝑡), where 𝜙(𝑥, 𝑡) is an 

arbitrary function of 𝑥 and 𝑡. 

Differentiating partially w.r.t. ' 𝑥 ', ∂𝜓/ ∂𝑥 = −𝑐𝑦2 + ∂𝜙/ ∂𝑥 

⇒  − 𝑐𝑦2 + ∂𝜙/ ∂𝑥 = 𝑐(𝑎2 + 𝑥2 − 𝑦2)  or  ∂𝜙/ ∂𝑥 = 𝑐(𝑎2 + 𝑥2) 

Integrating partially w.r.t. ' 𝑥 ', 

𝜙(𝑥, 𝑡) = 𝑐(𝑎2𝑥 + 𝑥3/3) + 𝜓(𝑦, 𝑡) 

where 𝜓(𝑦, 𝑡) is an arbitrary function of 𝑦 and 𝑡. 

Substituting the above value of 𝜙(𝑥, 𝑡), we get 

𝜓 = 𝑐(𝛼𝑥2 + 𝑥3/3 − 𝑥𝑦2) + 𝜓(𝑦, 𝑡), which is the required stream 

function. 

 

8.5 SUMMARY 

 

 This unit explains the following topics: 

(i) Definition of Stream Function  

(ii) Physical Significance of Stream Function 

(iii) Spin Components in Terms of 𝜓 

(iv) Complex Potential 

(v) Cauchy-Riemann Equations in polar form 
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8.6 GLOSSARY 

 

(i) Fluid 

(ii) Velocity 

(iii) Stream Function 

(iv) Cauchy-Riemann Equations 

(v) Complex Potential 
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(iii) John Cimbala and Yunus A Çengel (2019), Fluid Mechanics: 
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(iv) P.K. Kundu, I.M. Cohen & D.R. Dowling (2015), Fluid 

Mechanics, Academic Press; 6th edition. 
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8.8 TERMINAL QUESTIONS 

 

https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
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 1. What is a Stream Function? 

 2.  Define the Complex Potential? 

 3. Explain the Physical Significance of Stream Function? 

 4. If a stream function exists for the velocity field  

𝑢 = 𝑎(𝑥2 − 𝑦2),  𝑣 = −2a𝑥𝑦, 𝑤 = 0 

            find it, plot it, and interpret it. 

Solution:  Ψ = 𝑎 (𝑥2𝑦 +
𝑦3

3
) + 𝑐 

5. A velocity field is given by = 𝑥𝒊 + (𝑦 + 𝑡)𝒋 . Find the 

stream function and the streamlines for this field at 𝑡 = 2. 

Solution:  Ψ = 𝑥𝑦 + 2𝑥 + 𝑓(2) 

6. Determine the stream function 𝜓(𝑥, 𝑦, 𝑡) for the given 

velocity field  𝑢 = −2𝑡2,  𝑣 = 𝑥3, 

Solution: 𝑡2𝑦2 +
𝑥4

4
+ 𝐹(𝑡) 

7. Determine the stream function corresponding to the 

velocity potential 

a) 𝜙 =
5

3
𝑥3-6𝑥𝑦2  

b) 𝜙 = 𝑥2-𝑦2  

c) 𝜙 = 𝑥3-3𝑥𝑦2  

d) 𝜙 = −3𝑥2+𝑦3   

Solution: 

a) 5𝑥2𝑦 − 2𝑦3 + 𝑓(𝑥) 

b) 2𝑥𝑦 + 𝑓(𝑥) 

c) 3𝑥2𝑦 − 𝑦3 + 𝑓(𝑥) 

d) −2a𝑥𝑦 + 𝑓(𝑥) 

8.  Comment True or False: 

a) The partial derivative of stream function with respect to any 

direction gives the velocity component perpendicular to that 

direction. 

Solution: True 
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b) Stream function varies along a streamline. 

Solution: False 

c) The difference between any two stream function give discharge 

per unit depth. 

Solution: True 

d) Stream function is defined as scalar function of space and time. 

Solution: True 
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UNIT 9: STANDARD TWO-DIMENSIONAL 

FLOWS 

CONTENTS:  

9.1   Introduction  

9.2   Objectives 

9.3    Complex Velocity Potential 

9.4    Superposition of Flows 

9.5     Solved Examples 

9.6    Summary 

9.7    Glossary 

9.8   References 
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9.1 INTRODUCTION 

Two-dimensional flows refer to fluid motions where the velocity components 

are functions of only two spatial dimensions, 𝑥 and 𝑦. These flows are crucial for 

simplifying complex three-dimensional problems that are commonly encountered in 

various engineering applications. 

Examples include flow around air-foils, water flow over dams, and airflow in wind 

tunnels. The simplification to two dimensions allows for analytical and easier 

computational modelling. 

Assuming independence from the third dimension reduces the complexity of the 

goveing equations, making analytical and numerical solutions more tractable. 

 

9.2 OBJECTIVES 

    After completion of this unit learners will be able to: 

(i) Complex Velocity Potential  

(ii) Superposition of Flows 

9.3 COMPLEX VELOCITY POTENTIAL 

 

The complex velocity potential, 𝑊(𝑧), is a function that combines the velocity 

potential, 𝜙, and the stream function, 𝜓, into a single complex function. 

𝑊(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖𝜓(𝑥, 𝑦) 

Here, 𝑧 = 𝑥 + 𝑖𝑦 is a complex variable representing the coordinates in the flow field. 

The complex velocity potential is related to the complex velocity, 𝑉(𝑧), as follows: 

𝑉(𝑧) =
𝑑𝑊

𝑑𝑧
= 𝑢 − 𝑖𝑣 
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Where 𝑢 and 𝑣 are the velocity componets in the 𝑥 and 𝑦 directions, respectively. 

 Types of standard two-dimensional flows 

(i) Uniform flow: A flow where the velocity is constant in both magnitude and 

direction. 

Complex potential: 𝑊(𝑧) = 𝑈𝑧 

Complex velocity: 𝑉(𝑧) = 𝑈 

(ii) Source or sink:  A point from which fluid emanates or into which fluid 

converges. 

Complex potential:  𝑊(𝑧) =
𝑄

2𝜋
𝑙𝑛(𝑧) 

  Complex velocity: 𝑉(𝑧) =
𝑄

2𝜋𝑧
 

  Here, 𝑄 is the source strength (Positive for a source, negative for a sink) 

(iii) Vortex: A point around which fluid circulates. 

Complex potential: 𝑊(𝑧) =
−𝑖Γ

2𝜋
𝑙𝑛(𝑧)  

Complex velocity: 𝑉(𝑧) =
𝑖Γ

2𝜋𝑧
  

Here, Γ is the circulation strength. 

(iv) Doublet: A combination of source and sink of equal strength but opposite in 

sign, placed infinitesimally close together. 

Complex potential: 𝑊(𝑧) =
𝜇

𝑧
 

              Complex velocity: 𝑉(𝑧) = −
𝜇

𝑧2 

              Here, 𝜇 is the doublet strength. 

 

9.4 SUPERPOSITION OF FLOWS 
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The principle of superposition allows us to combine simple flow solutions to 

create more complex flow patterns. In potential flow theory, since the governing 

equations (Laplace's equation for incompressible, irrotational flow) are linear, the sum 

of solutions is also a solution. Here, we explore the superposition of various 

fundamental flows to model more complicated scenarios. 

 

 Note: Uniform Flow and Source/Sink 

When a uniform flow is superimposed with a source or sink, the resulting flow pattern 

is altered by the addition of radial outflow or inflow from the source/sink. 

 Complex Potential: 𝑊(𝑧) = 𝑈𝑧 +
𝑄

2𝜋
𝑙𝑛(𝑧) 

 Flow Characteristics:  

(i) Far from the source, the flow behaves like a uniform flow. 

(ii) Near the source, the flow diverges (source) or converges (sink) radially. 

 Streamline Pattern: The streamlines show parallel lines far from the origin but curve 

outward (for a source) or inward (for a sink) as they approach the origin. 

 

Note:  Uniform Flow and Doublet (Flow around a Cylinder) 

The combination of a uniform flow and a doublet can model the flow around a 

cylinder. This is a classic problem in fluid dynamics with significant applications in 

aerodynamics and hydrodynamics. 

 Complex Potential: 𝑾(𝒛) = 𝑼𝒛 −
𝒌

𝒛
, where 𝑘 is the strength of the doublet, related 

to the radius 𝑅 of the cylinder by 𝑘 = 𝑈𝑅2. 

 Flow Characteristics: 

(i) At large distances, the flow resembles a uniform flow.  

(ii) Close to the cylinder, the doublet induces a circular flow pattern. 
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(iii) There are stagnation points on the surface of the cylinder where the flow 

velocity is zero. 

 Streamline Pattern: The streamlines wrap around the cylinder, with two 

stagnation points on the surface of the cylinder at angles 𝜃 = 0 and 𝜃 = 𝜋. 

 

Note: Source and Sink Pair (Doublet) 

The combination of a source and a sink of equal and opposite strengths, placed very 

close to each other, forms a doublet. This configuration is useful in modelling flow 

around bodies with sharp changes in geometry. 

 Complex Potential: 𝑾(𝒛) =
𝑸

𝟐𝝅
(𝒍𝒏(𝒛 − 𝒂) − 𝒍𝒏(𝒛 + 𝒂)) ≈ −

𝒌

𝒛
 for small 𝑎, where 

𝑄 is the strength of the source/sink, and 2𝑎 is the distance between them. 

 Flow Characteristics: 

(i) Flow lines originate from the source and terminate at the sink.  

(ii) When the source and sink are close together, their effects combine to 

create a dipole-like pattern. 

 Streamline Pattern: The streamlines are symmetric about the axis joining the 

source and sink, showing the characteristic dipole pattern. 

Note:  Vortex and Uniform Flow 

           (Flow around a Rotating Cylinder) 

Combining a vortex with a uniform flow models the flow around a rotating cylinder, 

which is important in understanding lift generation in aerodynamics (Magnus effect). 

 Complex Potential: 𝑊(𝑧) = 𝑈𝑧 −
𝑘

𝑧
−

𝑖Γ

2𝜋
𝑙𝑛(𝑧),where 𝛤 is the circulation 

around the cylinder. 

 Flow Characteristics: 

(i) The uniform flow dictates the overall direction. 

(ii) The doublet represents the solid boundary of the cylinder. 
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(iii) The vortex adds rotational motion to the flow, modifying pressure 

distribution around the cylinder. 

 Streamline Pattern: The streamlines show the wrapping around the cylinder 

combined with circulation. The direction of circulation (clockwise or 

counterclockwise) influences the location of the stagnation points and alters the 

symmetry of the streamlines. 

9.5  SOLVED EXAMPLES 

 

Problem1: Consider a uniform flow with velocity U = 5m/s in the positive x-

direction. A doublet of strength μ = 10m2/s is placed at the origin. Determine the 

complex potential and velocity at the point z = 1 + 𝑖. 

Solution:  

 Uniform flow 

Complex potential: 𝑊𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑧) = 𝑈𝑧 = 5𝑧 

Velocity: 𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑧) = 5 

Doublet 

Complex potential: 𝑊𝑑𝑜𝑢𝑏𝑙𝑒𝑡(𝑧) =
𝜇

𝑧
=

10

𝑧
 

Velocity: 𝑉𝑑𝑜𝑢𝑏𝑙𝑒𝑡 (𝑧) = −
𝜇

𝑧2 = −
10

𝑧2  

Combined flow 

Total complex potential:  W(z) = 𝑊𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑧)+𝑊𝑑𝑜𝑢𝑏𝑙𝑒𝑡(𝑧)= 5𝑧 + 
 10

𝑧
 

Total complex velocity:  V(z) = 𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑧)+𝑉𝑑𝑜𝑢𝑏𝑙𝑒𝑡 (𝑧)= 5 + −
10

𝑧2  

Now, evaluation of total complex potential at z = 1 + 𝑖 
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⇒ z̅ = 1 − 𝑖 

⇒ 𝑧2= (1 + 𝑖)2 = 2𝑖 

Total complex potential  

W(z) = 𝑊𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑧)+𝑊𝑑𝑜𝑢𝑏𝑙𝑒𝑡 (𝑧) 

           = 5(1 + 𝑖) + 
 10

(1+𝑖)
 

           = 5(1 + 𝑖) + 
 10(1−𝑖)

(1+𝑖)(1−𝑖)
  

            =  5(1 + 𝑖)+ 5(1 − 𝑖) =10 

Now, evaluation of total complex velocity at z = 1 + 𝑖 

V(z) = 𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑧)+𝑉𝑑𝑜𝑢𝑏𝑙𝑒𝑡 (𝑧)= 5 + −
10

2𝑖
 = 5 + 5𝑖. 

So, at z = 1 + 𝑖, total complex potential is 10 and total complex velocity 5 + 5𝑖. 

 

Problem2: A source of strength Q = 8m2/s and a vortex with circulation Γ =

−4πm2/s are placed at the origin. Calculate the complex potential and velocity at z =

2 + 2i. 

Solution:  

Complex potential: 𝑊𝑠𝑜𝑢𝑟𝑐𝑒(𝑧) =
𝑄

2π
𝑙𝑛(𝑧) =

8

2π
𝑙𝑛(𝑧) =

4

π
𝑙𝑛(𝑧) 

Velocity: 𝑉𝑠𝑜𝑢𝑟𝑐𝑒(𝑧) =
𝑄

2πz
=

8

2πz
=

4

πz
 

    Vortex: 

Complex potential: 𝑊𝑣𝑜𝑟𝑡𝑒𝑥(𝑧) =
−𝑖 Γ

2π
𝑙𝑛(𝑧) =

−𝑖 (−4π)

2π
𝑙𝑛(𝑧) = 2𝑖 𝑙𝑛(𝑧) 
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Velocity: 𝑉𝑣𝑜𝑟𝑡𝑒𝑥(𝑧) =
𝑖 Γ

2πz
=

𝑖 (−4π)

2πz
=

−2𝑖

z
 

               Combined flow:  

Total complex potential  

W(z) = 𝑊𝑠𝑜𝑢𝑟𝑐𝑒(𝑧)+𝑊𝑣𝑜𝑟𝑡𝑒𝑥(𝑧)=  
4

π
𝑙𝑛(𝑧)+ 2𝑖 𝑙𝑛(𝑧) 

Total complex velocity 

V(z) = 𝑉𝑠𝑜𝑢𝑟𝑐𝑒(𝑧)+𝑉𝑣𝑜𝑟𝑡𝑒𝑥(𝑧)= 
4

πz
 +

−2𝑖

z
 

Now, evaluation of total complex potential at z = 2 + 2𝑖 

𝑙𝑛(𝑧)= 𝑙𝑛(2 + 2𝑖) 

To find above value convert z = 2 + 2𝑖 into polar form (Use 𝑥 = 𝑟𝑐𝑜𝑠(𝜃), 𝑦 =

𝑟𝑠𝑖𝑛(𝜃)) 

⟹ r = √22 + 22  = 2√2 

𝑎𝑛𝑑  θ = tan−1(
2

2
) =

π

4
 

So,  𝑙𝑛(2 + 2𝑖) = 𝑙𝑛(2√2) + 𝑖
π

4
= ln(2) + ln(√2)+ 𝑖

π

4
   

=ln(2) +
ln(2)

2
+ 𝑖

π

4
   = 

3ln(2)

2
 + 𝑖

π

4
 

Now, total complex potential  

𝑊𝑠𝑜𝑢𝑟𝑐𝑒(𝑧)+𝑊𝑣𝑜𝑟𝑡𝑒𝑥(𝑧)=  
4

π
𝑙𝑛(𝑧)+ 2𝑖 𝑙𝑛(𝑧) 

    =  
4

π
(

3ln(2)

2
+  𝑖

π

4
)+ 2𝑖 (

3ln(2)

2
+ 𝑖

π

4
) 

                                        = 
6ln(2)

π
+ 3𝑖 𝑙𝑛(2)+ 𝑖 −

π

2
 

And total complex velocity 
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V(z) = 𝑉𝑠𝑜𝑢𝑟𝑐𝑒(𝑧)+𝑉𝑣𝑜𝑟𝑡𝑒𝑥(𝑧)= 
4

πz
 +

−2𝑖

z
 

                                  = 
4−2𝑖𝜋

π(2+2𝑖)
 

                                       =
(4−2𝑖𝜋)(2−2𝑖)

π(2+2𝑖)(2−2𝑖)
 = 

(4−2𝑖𝜋)(1−𝑖)

4π
 

                                   = 
2(2+𝜋−2𝑖−𝑖𝜋)

4π
 = 

(2+𝜋)

2π
−

𝑖(2+𝜋)

2π
=

(2+𝜋)

2π
(1 − 𝑖)  

 

Problem3: Consider a uniform flow with a velocity U = 3m/s in the positive x-

direction. Determine the complex potential and the velocity at the point z = 1 + 2i. 

Solution:  

Complex potential:  

𝑊(𝑧) = 𝑈𝑧 = 3𝑧 

At  z = 1 + 2i 

𝑊(𝑧) = 𝑈𝑧 = 3(1 + 2i) = (3 + 6i) 

Complex Velocity:  

V(z) =
dW

dz
= U 

Here, V(z) =3 (constant for uniform flow) 

So, at z = 1 + 2i, the complex potential is (3 + 6i) and velocity is 3 m/s in the 

positive 𝑥-direction. 
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Problem 4: A source of the strength Q = 4m2/s is placed at the origin. Determine the 

complex potential and the velocity at the point z = 2i. 

Solution:  

Complex potential, for a source,  𝑊(𝑧) =
𝑄

2𝜋
𝑙𝑛(𝑧) 

                                                                  =
4

2𝜋
𝑙𝑛(𝑧) =

2

𝜋
𝑙𝑛(𝑧) 

At  z = 2i: 

Convert z = 2i into polar form, then  

z = 2i = 2e
iπ

2⁄  

taking logarithm on both sides, we get 

𝑙𝑛(𝑧)  = 𝑙𝑛(2i) = 𝑙𝑛(2e
iπ

2⁄ ) 

⇒ ln(2) + i
π

2
 

So,  𝑊(2𝑖) =
2

𝜋
𝑙𝑛(𝑧) =

2

𝜋
(ln(2) + i

π

2
) 

                      =
2

𝜋
ln(2) + i 

Complex Velocity:  

V(z) =
Q

2πz
=

4

2πz
=

2

πz
 

At  z = 2i, V(2i) =
2

π(2i)
= −

i

π
. 

Problem 5: A vortex with circulation Γ = −2πm2/s is placed at the origin. Determine 

the complex potential and velocity at the point z = 1. 

 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                                                          160 

 

Solution: 

  Complex potential:  

𝑊𝑣𝑜𝑟𝑡𝑒𝑥(𝑧) =
−𝑖 Γ

2π
𝑙𝑛(𝑧) =

−𝑖 (−2π)

2π
𝑙𝑛(𝑧) = 𝑖 𝑙𝑛(𝑧) 

At z = 1 

𝑊𝑣𝑜𝑟𝑡𝑒𝑥(𝑧) = 𝑖 𝑙𝑛(1) = 0 

              Velocity:  

𝑉𝑣𝑜𝑟𝑡𝑒𝑥(𝑧) =
𝑖 Γ

2πz
=

𝑖 (−2π)

2πz
=

−𝑖

z
 

At  z = 1 

𝑉𝑣𝑜𝑟𝑡𝑒𝑥(𝑧) = 
−𝑖

z
 =  

−𝑖

1
 =   −𝑖 . 

Problem 6: A doublet of strength  μ = 5m2/s is placed at the origin. Determine the 

complex potential and the velocity at the point z = 1 − i. 

Solution: 

               Complex potential: 

For doublet, W(z) =
μ

z
=

5

z
 

At z = 1 − i, W(z) =
5(1+i)

(1−i)(1+i)
 

                      =
5(1+i)

2
 

              Complex Velocity:  

V(z) =
−μ

z2
=

−5

z2
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At z = 1 − i,  V(z) =
−5

(1−i)2 =
5

2i
=

5

2i
×

−i

−i
=

5i

2
. 

Multiple Choice Questions (MCQs) 

1. The complex velocity potential for a uniform flow in the  𝑥 −direction is: 

(a) 
𝑄

2𝜋
𝑙𝑛(𝑧) 

(b) 𝑈𝑧 

(c) 
−𝑘

𝑧
 

(d) 
−𝑖 Γ

2π
𝑙𝑛(𝑧) 

𝐴𝑛𝑠𝑤𝑒𝑟: (𝑏) 

2. Which of the following represents the complex velocity potential for a vortex? 

(a) 
𝑄

2𝜋
𝑙𝑛(𝑧)  

(b) 𝑈𝑧  

(c) 
−𝑘

𝑧
  

(d) 
−𝑖 Γ

2π
𝑙𝑛(𝑧) 

 

𝐴𝑛𝑠𝑤𝑒𝑟: (𝑑) 

 

3. The velocity components for a source of strength 𝑄 are: 

(a) 𝑢 =
𝑄

2𝜋𝑟
𝑐𝑜𝑠𝜃,  𝑣 =

𝑄

2𝜋𝑟
𝑠𝑖𝑛𝜃 

(b) 𝑢 =
𝑘

𝑟2 𝑐𝑜𝑠𝜃,  𝑣 = −
𝑘

𝑟2 𝑠𝑖𝑛𝜃 

(c) 𝑢 = 𝑈,  𝑣 = 0 

(d) 𝑢 = −
Γ

2𝜋𝑟
𝑠𝑖𝑛𝜃,  𝑣 =

Γ

2𝜋𝑟
𝑐𝑜𝑠𝜃 

𝐴𝑛𝑠𝑤𝑒𝑟: (𝑎) 

4. The stream function for a doublet is given by 

(a) 𝜓 = 𝑈𝑦 
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(b) 𝜓 =
𝑄

2𝜋
𝜃 

(c) 𝜓 = −
𝑘

𝑟
𝑠𝑖𝑛 𝜃 

(d) 𝜓 = −
Γ

2𝜋
𝑙𝑛(𝑟) 

𝐴𝑛𝑠𝑤𝑒𝑟: (𝑐) 

5. In a flow around a cylinder, the complex potential is a combination of which two 

flows? 

(a) Uniform flow and source 

(b) Uniform flow and doublet 

(c) Source and vortex 

(d) Doublet and vortex 

𝐴𝑛𝑠𝑤𝑒𝑟: (𝑏) 

9.6   SUMMARY 

 

 This unit explains the following topics: 

(i) Complex Velocity Potential 

(ii) Superposition of Flows 

 

9.7 GLOSSARY 

(i) Fluid 

(ii) Velocity 

(iii)Stream Function 

(iv) Cauchy-Riemann Equations 
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UNIT 10: TWO – DIMENSIONAL IMAGE SYSTEM  
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10.1   Introduction  

10.2   Objectives 

10.3   Complex Potential for image system 

   10.3.1 The Milne-Thompson Circle Theorem 

   10.3.2 Applications of the theorem 

10.3.3 Detailed steps for applying the Milne-Thompson circle theorem 

10.4   Solved problems 

10.5 Summary 

10.6   Glossary 

     10.7    References 
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10.1 INTRODUCTION 

 

In fluid dynamics, the method of images is a powerful technique 

used to solve problems involving flow around the boundaries. The method 

involves introducing imaginary source, sinks, vortices, or other flow 

elements (termed images) to satisfy boundary conditions. This technique is 

particularly useful in two-dimensional potential flow problems, where it 

helps in maintaining the condition imposed by solid boundaries. 

 

Basic concept: When a fluid flow encounters a solid boundary, the normal 

component of the velocity at the boundary must be zero (impermeability 

condition). To satisfy this condition, we introduce image elements that 

cancel out the normal velocity induced by the real flow elements at the 

boundary. 

 

For example, 

1. Image of a source with respect to a line.  

Suppose that images of the source 𝑚 at 𝐴(𝑎, 0) on 𝑥 −axis is required with 

respect to 𝑂𝑌. Take an equal source at 𝐴’(−𝑎, 0). Let 𝑃 be any point on 𝑂𝑌 

such that 𝐴𝑃 = 𝐴’𝑃 = 𝑟. Then the velocity at 𝑃 due to source at 𝐴 is 𝑚/𝑟 

along 𝐴𝑃 and velocity at 𝑃 due to source 𝐴’ is 𝑚/𝑟 along 𝐴’𝑃. Let 𝑃𝐿 be 

perpendicular to 𝑂𝑌. Then, we see that. 

Resultant velocity at P due to sources at A and A’ along PL 

= (𝑚/𝑟)𝑐𝑜𝑠𝜃−= (𝑚/𝑟)𝑐𝑜𝑠𝜃 =0, showing that there will be no flow 

across 𝑂𝑌.  
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                                               Fig. 10.1.1 

Hence, the image of a simple source with respect to a line in two-

dimensions is an equal source equidistant from the line opposite to the 

source. 

2. Image of a doublet with respect to a line.  

Let 𝑃𝑄 be a doublet with its axis inclined at an angle α to 𝑂𝑋. Then by 

using the above result for finding the images of source and sink with 

respect to 𝑂𝑌, we see that the image of the doublet 𝑃𝑄 is again an equal 

doublet 𝑃’𝑄’ symmetrically placed as shown in the figure. 

  

              

                                           Fig. 10.1.2 

10.2 OBJECTIVES 
    

 After completion of this unit learners will be able to: 

(i) The Milne-Thompson circle theorem  
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10.3 COMPLEX POTENTIAL FOR IMAGE SYSTEM 

 

For a point source at 𝑧0and its image at 𝑧0 ̅̅̅̅ ,the complex potential W(z) is: 

W(z) =
Q

2π
(ln(z − 𝑧0) − 𝑙𝑛(𝑧 − 𝑧0 ̅̅̅̅ )) 

10.3.1 THE MILNE-THOMPSON CIRCLE THEOREM 

 

The Milne-Thompson circle theorem is a method used to solve flow 

problems involving circular boundaries. This theorem is particularity 

useful for flow around cylinder or within circular domains. 

 

Statement: Let f(z) be the complex potential for a flow having no rigid 

boundaries and such that there are no singularities of flow within the circle 

|z| = a. then, on introducing the solid circular cylinder |z| = a into the 

flow, the new complex potential is given by w = f(z) + 𝑓̅ (
a2

z
) for |z| ≥ a. 

 

Proof: Let 𝐶 be the cross section of the circular cylinder |𝑧| = 𝑎. Then on 

𝐶, 𝑧z̅ = a2 or z̅ = 
a2

z
. hence for points on the circle, we have  

  

𝑤 = 𝑓(𝑧) + 𝑓̅ (
a2

z
) = 𝑓(𝑧) + 𝑓(̅z̅)   or  ∅ + 𝑖𝜑 =  𝑓(𝑧) + 𝑓(̅z̅)        (1) 

 

Since the quantity on R.H.S. of (1) is purely real, equating imaginary parts 

(1) gives 𝜑 = 0 on 𝐶. hence 𝐶 is a stream line in the new flow. 

By hypothesis all the singularities of 𝑓(𝑧) (at which sources, sinks, 

doublets or vortices may be present) lie outside the circle |𝑧| = 𝑎 and so 

the singularities of 𝑓 (
a2

z
) lie inside the circle |𝑧| = 𝑎. Hence the 

singularities of f̅ (
a2

z
) also lie inside the circle |𝑧| = 𝑎. Thus, we find that 

the additional term f̅ (
a2

z
) introduces no new singularities into the flow 

outside the circle |𝑧| = 𝑎. 
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Hence |𝑧| = 𝑎 is a possible boundary for the new flow  𝑤 = 𝑓(𝑧) + f̅ (
a2

z
)  

is the appropriate complex potential for the new flow.  

 

 To determine image system for a source outside a circle 

(or a circular cylinder) of radius 𝐚 with help of the circle 

theorem. 

Let 𝑂𝐴 = 𝑓. Suppose there is a source of strength 𝑚 at 𝐴 where 𝑧 = 𝑓, 

outside the circle of radius a whose centre is at 𝑂. When the source is alone 

in the fluid the complex potential at a point 𝑃(𝑧) is given by  

𝑓(z) = −𝑚𝑙𝑜𝑔(z − 𝑓)  then 𝑓(z)̅̅ ̅̅ ̅̅ = −𝑚𝑙𝑜𝑔(z − 𝑓) 

𝑓 ̅ (
a2

z
) = −𝑚𝑙𝑜𝑔 (

a2

z
− 𝑓) 

 

When the circle of section |z| = 𝑎 is  

introduced, then the complex potential 

 in the region |z| ≥ 𝑎  is given by 

𝑤 = 𝑓(z) + 𝑓̅ (
a2

z
) =−𝑚𝑙𝑜𝑔(z − 𝑓) − −𝑚𝑙𝑜𝑔 (

a2

z
− 𝑓) 

   = −𝑚𝑙𝑜𝑔(z − 𝑓) − 𝑚𝑙𝑜𝑔 (
a2−𝑓z

z
) 

   = −𝑚𝑙𝑜𝑔(z − 𝑓) − 𝑚𝑙𝑜𝑔(a2 − 𝑓z) + 𝑚𝑙𝑜𝑔𝑧 

   = −𝑚𝑙𝑜𝑔(z − 𝑓) − 𝑚𝑙𝑜𝑔(−𝑓) (z −
a2

𝑓
) + 𝑚𝑙𝑜𝑔𝑧 

   = −𝑚𝑙𝑜𝑔(z − 𝑓) − 𝑚𝑙𝑜𝑔 (z −
𝑎2

𝑓
) + 𝑚𝑙𝑜𝑔𝑧 − 𝑚𝑙𝑜𝑔(−𝑓) 

 

𝑤 = −𝑚𝑙𝑜𝑔(z − 𝑓) − 𝑚𝑙𝑜𝑔 (z −
a2

𝑓
) + 𝑚𝑙𝑜𝑔𝑧 + constant,            (1) 

The constant (real or complex, −𝑚𝑙𝑜𝑔(−f)) being immaterial from the 

view point of analysing the flow. (1) shows that 𝑤 is the complex potential 

of 

(i) a source 𝑚 at 𝐴, 𝑧 = 𝑓 

(ii) a source 𝑚 at 𝐵, 𝑧 =
a2

𝑓
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(iii) a sink −𝑚 at the origin. 

Since 𝑂𝐴. 𝑂𝐵 =  𝑎2, 𝐴 and 𝐵 are the inverse points with respect to the 

circle |𝑧| = 𝑎 and so 𝐵 is inside the circle. 

Thus, the image system for a source outside a circle consists of an equal 

source at inverse point and an equal sink at the centre of the circle. 

 

10.3.2 APPLICATIONS OF THE THEOREM 

 

(i) Flow around a cylinder: 

Consider a uniform flow  W(z) = Uz. 

The complex potential around a cylinder of the radius 𝑅 is: 

W′(z) = Uz + U (
R2

z̅
)  =  U (z +

R2

z̅
) 

This represents the flow around a cylinder, where the term 
R2

z̅
 accounts for 

the effect of the cylinder. 

 

(ii) Source near a cylinder: 

Consider a source of strength 𝑄 located at 𝑧 =  𝑎. 

The complex potential due to the source is  

W(z) =
Q

2π
ln(z − a) 

The complex potential around a cylinder is: 

W(z) =
Q

2π
ln(z − a) +

Q

2π
𝑙𝑛 (

R2

z̅
− 𝑎) 

 

10.3.3 Detailed steps for applying the Milne-Thompson circle theorem 

 

     Step 1. Identify the original flow potential 𝑊(𝑍): 

Determine the complex potential for the given flow problem without 

the cylinder. 
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Step 2. Calculate the image potential: 

Compute W (
R2

z̅
),  where 

R2

z̅
 represents the image point inside the 

cylinder. 

     Step 3. Superpose the potentials: 

The resultant complex potential W′(z) is the sum of the original 

potential and the image potential. 

 

10.4   SOLVED PROBLEMS 
 

Problem1: Determine the complex potential for a uniform flow of the   

speed 𝑈 past a cylinder of radius 𝑅 centred at the origin. 

Solution: Original potential: W(z) = Uz. 

         Image potential: W (
R2

z̅
) = U (

R2

z̅
) 

       Resultant potential: W′(z) = Uz + U (
R2

z̅
)  =  U (z +

R2

z̅
) 

 

Problem2: Determine the complex potential for a source of the strength 𝑄 

located at 𝑧 = 𝑎 near a cylinder of radius 𝑅 centred at the origin. 

Solution:  Original potential: W(z) =  
Q

2π
ln(z − a) 

                   Image potential: W (
R2

z̅
) = 

Q

2π
𝑙𝑛 (

R2

z
− 𝑎) 

                   Resultant potential: W′(z) = 
Q

2π
ln(z − a) +

Q

2π
𝑙𝑛 (

R2

z
− 𝑎). 

 

Problem3: Find image of a line source in a circular cylinder. 

Solution: Let there be a uniform line source of strength m per unit length 

through the point 𝑧 = 𝑐, where 𝑧 > 𝑎. then the complex potential at a point 

𝑧 is given by 

f(z) = −mlog(z − c) 
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Then  f(z)̅̅ ̅̅ ̅ = −mlog(z − c) 

And so  𝑓  ̅̅ ̅ (
a2

z
) = −mlog (

a2

z
− c) 

Let a circular cylinder of section |z| = a be introduced. Then the new 

complex potential by Milne-Thompson Circle Theorem is given by 

w = f(z) + 𝑓̅ (
a2

z
) for |z| ≥ a  

I.e. w = −mlog(z − c) − mlog (
a2

z
− c) 

𝑤 = −mlog(z − c) − mlog (z −
a2

c
) + mlogz+ constant,           (1) 

 

 

 

The constant (real or complex) being immaterial for the discussion of the 

flow. The point z =
a2

c
 is the inverse point of the point 𝑧 =  𝑐 with regards 

to the circle  |z| = a. Hence (1) shows that the image of a line source in a 

right circular cylinder is an equal source through the inverse pint in the 

circular section in the plane of flow together with an equal sink through the 

centre of the section. 

 

Problem4: Determine image of a line doublet parallel to the axis of a right 

circular cylinder. 

Solution: Let there be a uniform line doublet of strength μ per unit length 

through the point z = c > a. Furthermore let the axis of the line doublet be 

inclined at an angle α to 𝑥 −axis. Then the complex potential at a point 𝑧 is 

given by 

f(z) = (μeiα)/(z − c) 

 

Then     f(̅z) = (μe−iα)/(z − c) 

And so  

𝑓̅ (
a2

z
) = (μe−iα)/ (

a2

z
− c) 

Let a circular cylinder of section |z| = a be introduced. Then he new 
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complex potential by Milne-Thompson Circle Theorem is given by 

𝑤 = (μe−iα)/(z − c)+ (μe−iα)/ (
a2

z
− c). 

 

            Multiple Choice Questions (MCQs) 

 
1. The method of image is used to: 

(a) Increase the flow velocity 

(b) Satisfy boundary conditions 

(c) Change the flow direction 

(d) Reduce the flow viscosity 

 

Answer: (b) Satisfy boundary conditions 

 

 

 

2. The complex potential for a uniform flow past a cylinder using the 

Milne-Thompson Circle Theorem is:  

(a) 𝑈𝑧 

(b) 
Q

2π
ln z 

(c)  U(z +
R2

z̅
) 

(d) - 
𝜅

𝑧
 

Answer: (c) U (z +
R2

z̅
) 

 

3. In the Milne-Thompson Circle Theorem, the image point of 𝑧 for a 

cylinder of radius 𝑅 is:  

(a) 
R

z
 

(b) 
R2

z
 

(c) 𝑅𝑧 

(d) 
z

R2 
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Answer: (b) 
R2

z
 

 

4. The complex potential for a source of strength 𝑄 located at 𝑧 = 𝑎 near a 

cylinder of radius 𝑅 is:  

(a) 
Q

2π
ln(z − a) 

(b) 
Q

2π
(ln(z − a) + 𝑙𝑛 (

R2

z
− 𝑎)) 

(c) 
Q

2π
ln(

R2

z
) 

(d) 
Q

2π
ln(

R2

a
) 

 

Answer: (b) 
Q

2π
(ln(z − a) + 𝑙𝑛 (

R2

z
− 𝑎)) 

 

5. The purpose of introducing image vortices in a flow near a wall is to: 

(a) Increase the strength of the original vortex 

(b) Satisfy the no- penetration boundary condition. 

(c) Create additional vortices in the flow 

(d) Change additional vortices in the flow 

 

Answer: (b) Satisfy the no- penetration boundary condition 

10.5   SUMMARY 

  

This unit explains the following topics: 

(i) Complex Velocity Potential 

(ii) Superposition of Flows 
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10.6 GLOSSARY 

 

(i) Fluid 

(ii) Velocity 

(iii) Stream Function 

(iv) Cauchy-Riemann Equations 
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11.12   Summary 

11.13 References 

11.14 Terminal questions 

11.15 Answers 

 

 

 

 

 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                                                          177 

 

11.1 INTRODUCTION 

 

A point from which the liquid is emitted radially and symmetrically in all directions is 

called source. A point to which fluid is flowing symmetrically and radially in all directions is 

called sink.  Sink flow is the reverse of source flow.  

 

 

 

 

 

 

 

Sources and sinks may arise due to some external causes rather than being easily 

obtained by certain dynamic effects of the motion of the fluid. For example, consider a simple 

source in a tank filled with a fluid. This source may be created by taking a long tube of a very 

small cross-section and injecting fluid through it into the tank as shown in Fig. 11.1 (i). In such 

a situation, we find that the fluid is coming out from the tube radially into the tank. Again, a 

sink can be created by taking a long tube of a very small cross-section and sucking fluid through 

the tube from the tank as shown in Fig. 11.1 (ii).  

Consider a source at the origin. Then, the strength of a source is defined as the total 

volume of flow coming out from the origin in a unit time. Similarly, the amount of fluid going 

into the sink in a unit time is called the strength of the sink.  

In two-dimensions, if 2 m  is the total volume of flow across any small circle 

surrounding the source, then m  is called strength of the source. Sink is a source of strength 

m . 

 

 

 

Fig. 11.1 
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11.2 OBJECTIVES 

    After completion of this unit learners will be able to: 

(i) Doublet in two-dimensions 

(ii) Image of a source with respect to a rigid infinite plane 

(iii) Stoke’s stream function 

 

11.3 SOURCES AND SINKS IN TWO - DIMENSIONS 

 

Consider a circle of radius r  with source at its centre. The, radial velocity rq  is given by 

1
rq

r









              (11.1) 

        or rq
r





              (11.2) 

Comparing Eq. (11.1) and Eq. (11.2), we get 

1

r r

 



 


 
             (11.3) 

Then, the flow across the circle is 2 rrq . Hence, we have 

2 2rrq m   or  rrq m                            (11.4) 

       or 
1

r m
r





 
  

 
 (by Eq. (11.1))                     (11.5) 

Integrating and omitting the constant of integration, we get  

m                           (11.6) 

Using Eq. (11.3) and Eq. (11.4), we obtain as before 

    logm r                              (11.7) 
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Eq. (11.6) shows that the streamlines are   constant, i.e., straight lines radiating from 

the source. Again, Eq. (11.7) shows that the curves of equi-velocity potential are r  constant, 

i.e., concentric circles with centre at the source.  

 

11.4 DOUBLET (OR DIPOLE) IN TWO-DIMENSIONS 

 

A doublet is defined as a combination of source m  and sink m  at a small distance 

s  apart such that the product m s  is finite. (Sink m  means sink of strength m ). 

Strength of doublet: If m s   finite where , 0m s  , then   is called the 

strength of the doublet and line s is called the axis of the doublet and its direction is taken 

from sink to source.  

 

Example 1: What arrangement of sources and sinks will give rise to the function 

2

log
a

w z
z

 
  

 
. Prove that two of the streamlines subdivide into a circle r a  and axis of y

. 

Solution. Given  
  2 2 2

log log log
z a z aa z a

w z
z z z

     
       

     
 

or    log log logw z a z a z      

which shows that there are two sinks of unit strength at the points z a  and z a   and a 

source of unit strength at the origin. Since w i    and z x iy  , we obtain 

     log log logi x iy a x iy a x iy           

     log log logi x a iy x a iy x iy                  

Equating imaginary parts on both sides, we have 

1 1 1tan tan tan
y y y

x a x a x
     

 
, as    2 2 11

log log tan
2

i i


   


     
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1 1 1 1

2 2 2

2
tan tan tan tan

1 .

y y

y xy yx a x a
y y x x y a x

x a x a

   


    

 


 

   

 
 

2 2 22 2 2
1 1

2 2 2

2 2 2

2

tan tan
2

1 .

xy y
y x y ax y a x

xy y x x y a

x y a x

 


  

 
 

 

 

The desired streamlines are given by   constant  1tan C , i.e. 

 
 

2 2 2

2 2 2

y x y a
C

x x y a

 


 
      (1) 

When 0C  , Eq. (1) reduces to 0y  . Thus, x axis  is a streamline. Again, when 

C  , Eq. (1) reduces to  2 2 2 0x x y a   , i.e., 0x   and 2 2 2x y a   or r a , which 

are streamlines.  

 

Example 2: There is a source of strength m at  0,0  and equal sinks at  1,0  and  1,0 . 

Discuss two-dimensional motion.  

Solution. Proceed just like Ex. 1. Here, we have 

     log 1 log 1 log 0w m z m z m z       

     log 1 log 1 logi m x iy x iy x iy             

Hence, 
1 1 1tan tan tan

1 1

y y y
m

x x x
    
     

 or 
 
 

2 2

1

2 2

1
tan

1

y x y

m x x y

 
 


 

 

The desired streamlines are given by 
m


 constant 

1tan C  i.e. 

 
 

2 2

2 2

1

1

y x y
C

x x y

 


 
                   (1) 
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Example 3: Find the stream function of the two-dimensional motion due to two equal sources 

and an equal sink situated midway between them.  

Solution. Let there be two sources of strength m  at the points z a  and z a   and a sink at 

of same strength at 0z   (origin). Then complex potential w  due to these sources and sink is 

given by  

     log log log 0w m z a m z a m z        

     log log logi m x iy m x iy a m x iy a            

       log log logi m x iy m x a iy m x a iy            

      
    

  

       

2 2

2 2 1

1

2 2 1

1 2 log
1 2 log tan

tan

1 2 log tan

x a y
i m x y i y x m

i y x a

m x a y i y x a

  





   
       
   

      
 

 

Equating imaginary parts on both sides, we get  

       1 1 1tan tan tanm y x m y x a y x a           

          
     
     

1 1 1 1

2 2 2

2
tan tan tan tan

1

y x a y x ay y xy

m x x x y ay x a y x a

    
     

       
      

 

          
    
    

 
 

2 2 2 2 2 2

1 1

2 2 22 2 2

2
tan tan

1 2

y x xy x y a y x y a
m

m x a x yy x xy x y a


 

    
   

   
 

 

Example 4: In a two dimensional liquid motion   and   are the velocity and current  

functions, show that a second fluid motion exists in which   is the velocity potential and   

the current function; and prove that if the first motion be due to sources and sinks, the second 

motion can be built up by replacing a source and an equal sink be a line of doublets uniformly 

distributed along any curve joining them.  
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Solution. Since   and   are the velocity potential and stream function respectively for the 

two-dimensional motion, we have 

    x y and y x                   (1) 

Again if   and   be the velocity potential and stream function respectively for 

another fluid motion in two-dimensions, then the conditions of the type (1) must be satisfied 

by   and    i.e., we must have  

   
and

x y y x

      
  

   
 

 y x and x y               

which is true by virtue of (1). 

 If follows that if w i    exists, then  'w i i i iw          , also exists. 

 Second part: Consider a source of strength m  at  ,0A a  and a sink of strength m  

at  ,0B a . Then, the complex potential function w  due to them is given by  

        log log logw m z a m z a m z a z a             (2) 

 Join ,A B  by an arbitrary curve. Then the axis of the doublet on this curve is normal 

to AB . If "w  be the complex potential due this line of doublet then  

  
2

2" log log
i

B
i

A

me z a z a
w dt me mi iw

z t z a z a


  

    
    

 The required result now follows from the first part. 

 

11.5 IMAGES 

 

If in a liquid, a surface S  can be drawn across which there is no flow, then any system of 

sources, sinks and doublets on opposite sides of this surface is known as the image of the 
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system with regard to the surface. Moreover, if the surface S  is treated as a rigid boundary and 

the liquid removed from one side of it, the motion on the other side will remain unchanged.  

As there is no flow across the surface, it must be a streamline. Thus, the fluid flows 

tangentially to the surface and hence the normal velocity of the fluid at any point of the surface 

is zero.  

11.6 IMAGE OF A SOURCE WITH RESPECT TO A RIGID    

        INFINITE PLANE (STRAIGHT LINE) 

 

To determine the image of a source m  at  ,0A a  with respect to the straight line OY . 

Place a source m  at  ,0B a . The complex potential at P  due to this system is given by 

   

  

 
 

1 2

1 2

1 2

1 2

log log

log

log .

log

i i

i

w m z a m z a

m z a z a

m re r e

m r r e

 

 

    

   

 

  
 

 

[where 1 2,PA r PB r  ] 

or     1 2 1 2logi m r r i           

This implies  1 2m                               (11.8)   

If P  lies on y axis , then PA PB  so that PAB PBA  ,  

i.e., 1 2 1 2          .            (11.9)      

By Eq. (11.8) and Eq. (11.9), 

m or     constant. 

Fig. 11.2 
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It means that the y axis  is a stream line. Hence, the image of a source m  at  ,0A a  

is a source m  at  ,0B a . That is to say, image of a source with respect to a line is a source 

of the same strength situated on the opposite side of the line at an equal distance.  

 

Example 5: Use the method of images to prove that if there be a 

source m  at the point 0z  in a fluid bounded by the lines 0   and 

3  , the solution is   

   3 3 3 '3 '

0 0 0 0 0 0 0 0log .i m z z z z where z x iy and z x iy           

Solution. Consider the following conformal transformation from  z plane xy plane   to 

 plane plane   : 

3 i iz where z re and Re            (1) 

3 3 3 3i iRe r e R r and        

Hence the boundaries 0   and 3   in z plane  transform to 0  and    

i.e., real axis in plane  . The point 0z in z plane  transform to point 0  in z plane  such 

that 
3

0 0z  . hence the image system with respect to real axis in plane   consists of  

(i) a source m  at 
3

0 0z    (ii) a source m  at 
' '3

0 0z   

Hence,    '

0 0log logw m m         

   3 3 3 '3

0 0log logw m z z m z z       

   3 3 3 '3

0 0logi m z z z z        

 

11.7 IMAGE OF A DOUBLET WITH RESPECT TO A   

       RIGID INFINITE PLANE 

Fig. 11.3 
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We are to find the image of the doublet 'AA  with respect 

to y axis . Treat the doublet 'AA  as a combination of source 

m  at 'A  and sink m  at A  with its axis 'AA  inclined at an 

angle   with x axis . The images of m  at A  and m  at 'A  

with respect to y axis  are respectively m  at B  and m  at 'B  

such that , ' 'BL LA B M MA  . Hence, the image is a doublet 'BB  

of the same strength with its axis anti-parallel to 'AA .  

11.8 IMAGE OF A DOUBLET WITH RESPECT TO A   

       CIRCLE 

 

Let us determine the image of a doublet 'AA  with its axis making an angle   with OA , 

outside the circle, there being a sink m  at A  and a source m  at 'A  . Join OA  and OA' . Let 

B  and 'B  be the inverse points of A  and 'A  with regard to the circle with O  as centre.  

 Then   2' ' ,OA OB OA OB a                 (11.10) 

where a  is the radius of the circle. 

Now the image of source m  at 'A  consists of a source m  at 'B  and a sink m  at O . 

Similarly, the image of sink m  at A  consists of a sink at B  and a source m  at O . 

Compounding these, we see that source m  and sink m  at O  cancel each other and hence the 

image of the given doublet 'AA  is another doublet 'BB .  

Let the strength of the given doublet 'AA  be  . 

Then    
'

lim '
A A

m AA


              (11.11) 

From (11.10)  ' ' ,OA OA OB OB                         (11.12) 

showing that triangles 'OAA  and 'OB B  are similar. From these similar triangles, we have 

   
2' ' ' '

' ' '

BB OB OB OA a

AA OA OA OA OA OA
   


            (11.13) 

Fig. 11.4 

Fig. 11.5 
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    
2

' '
' ' lim ' lim ' ,

'B B A A

a
strength of doublet B B m B B m AA

OA OA


 
     


 by (11.13) 

 2 2' ,a f    using (11.11) and taking 'OA OA f   

 Thus the image of a two-dimensional doublet at A  with respect to a circle is another 

doublet at the inverse point B , the axes of the doublets making supplementary angles with the 

radius OBA. 

 

Example 6: Find image of a line source in a circular cylinder. 

Solution. Let there be a uniform line source of strength m  per unit length through the point 

z c , where z a . then the complex potential at a point z  is given by  

       logf z m z c    

 Then       logf z m z c    

and so        2 2logf a z m a z c    

 Let a circular cylinder of section z a  be introduced. Then the new complex potential 

by Milne-Thomson’s circle theorem is given by  

      2w f z f a z for z a    

       2log logw m z c m a z c       

       2log log log .,w m z c m z a z m z const                       (1) 

The constant (real or complex) being immaterial for the discussion of the flow. The point 

2z a c  is the inverse point of the point z c  with respect to the circle z a . Hence, (1) 

shows that the image of a line source in a right circular cylinder is an equal line source through 

the inverse point in the circular section in the plane of flow together with an equal line sink 

through the centre of the section.   
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11.9 AXIS-SYMMETRIC FLOWS 

 

A flow pattern is said to be axisymmetric when it is identical in every plane that passes 

through a certain straight line. The straight line in question is referred to as the symmetry axis. 

 

11.10 STOKE’S STREAM FUNCTION 

The equation of continuity in cylindrical coordinates  , ,r z  is  

     
1 1

0ru v w
t r r r z


  



   
   

   
 

For liquid, this becomes 

 
1 1

0
v w

ru
r r r z

  
  

  
 

If the motion be symmetrical about z axis , then 0v   and the equation of continuity    

becomes 

 
1

0
w

ru
r r z

 
 

 
 

Instead of z axis , if we take x axis  as the axis of symmetry,   the direction  

perpendicular to x axis  and ,u v  velocity components in these directions, then 

 
1

0 , , ,
u

v r z x w u u v
x

 
 

 
       

 

or      0 . ., 0
M N

u v i e
x y x

 


    
    

    
 

But this is the condition that  

v dx u d    an exact differential d , say 

dx d
x

 




 
 
 
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This implies ,v u
x

 
 



 
  

 
 

1 1
,u v

x

 

  

 
   


, 

This function   is called the Stoke’s function. The streamlines are given by 

0
dx d

or v dx u d
u v


    

or  
1 1

0dx d
x

 


  

 
 

 
, 

or 0d or   constant along a streamline. 

That is why,   is called the Stoke’s stream function. Notice that   exists even if    

does not exist.  

 

11.11 A PROPERTY OF STOKE’S FUNCTION 

2  times the difference of the values of Stoke’s stream function at two points in the 

same meridian plane is equal to the flow across the angular surface obtained by the revolution 

around the axis of curve joining the points.  

Proof. Let 2  be an element of the curve and   its 

inclination to the axis, then outward flow across the surface 

of the revolution.  

 

 

cos sin 2

2 2

2 .

B

A

B B

A A

B A

v u ds

dx d d
x

  

 
   



  

 

  
   

  

 



   

This proves the required result.  

 

 

Fig. 11.6 
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Example 7: Discuss the motion for which Stoke’s stream function is given by 

4 2 2 21
cos sin ,

2
V a r r       where r  is the distance from a fixed point and   is the angle, 

this distance makes with a fixed direction.  

Solution. Given 
4

2 2 2

2

1 1
cos sin sin

2 2

Va
Vr

r
           (1) 

Evidently,   is a sum of two terms. Here, liquid flows with velocity V  parallel to x axis  in 

presence of a fixed solid of revolution. 

4
2

2

1
cos sin

2

Va

r
    

is the stream function for a solid which is moving with velocity V  parallel to negative direction 

of x axis . In this case, boundary condition is 

2 21
sin .

2
Vr const    

On boundary 

4
2 2 2

2

1 1
sin . cos sin

2 2

Va
Vr const

r
     

This implies that   
4

2 2 2

2
. 0, sin cos sin

a
const r

r
    

4 4 cos .r a    

It follows that the given stream function gives the motion of a liquid flowing past a solid  

4 4 cosr a  , moving with velocity V  along x axis . 

 

Example 8: A  and B  are a simple source and sink of strengths m  and 'm  respectively in an 

infinite liquid. Show that the equation of the streamlines is cos 'cos ' .m m const   , where 

, '   are the angles which ,AP BP  make with ,AB P , being any point. Prove also that if 

'm m , the cone defined by the equation  cos 1 2 'm m    divides the streamlines issuing 

from A  into two sets, one extending to infinity and the other terminating at B . 
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Solution. Let Stokes’s stream function at any point P  be  . Then, we have  

    cos 'cos 'm m     

   The required streamlines are given by .const  ,  

i.e.,     cos 'cos ' .m m const c          (1) 

 For the extreme streamline leaving A  (say at angle  ) and leaving B , we find that 

when P  is very near to A , , '      and when P  is very near B , 0   and ' 0  . Hence 

for such streamline, (1) gives 

 cos ' ' cos 1 2 ' .m m m m or m m       

This generates the cone    cos 1 2 ' .m m    

 

11.12 SUMMARY 

 

 This unit explains the following topics: 

(i) Sources and sinks in two-dimensions 

(ii) Doublet in two-dimensions 

(iii) Image of a source with respect to a rigid infinite plane (straight line) 

(iv) Image of a doublet with respect to a rigid infinite plane  

(v) Image of a doublet with respect to a circle 

(vi) Stoke’s stream function 
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Fig. 11.7 
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11.14 TERMINAL QUESTIONS 

 

1. The image of a source m  with respect to a circle is a source m  at the inverse point 

and  

(i) a source m  at the centre 

(ii) a source m  at the same point 

(iii) a sink m  at the centre  

(iv) None of these. 

 

2. If   be the stream function, then the equation of streamline is given by 

(i)    constant  

(ii)   polynomial 

(iii)    trigonometric function 

(iv)    logarithmic function 

 

3. If the fluid is directed radially inward to a point from all directions in a symmetric 

manner, it is  

(i) Source 

(ii) Doublet 

(iii) Sink  

(iv) Triplet 

 

4. How many sinks are there if the complex potential is given by   2logw z a z  ? 

(i) 1 
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(ii) 2 

(iii) 3 

(iv) None of these. 

 

5. With usual notations complex potential of a doublet is 

(i)  ie z a   

(ii)  ie z a    

(iii)  ie z a   

(iv) None of these. 

 

6. In usual notations, the Stokes’ stream function for a simple source on the axis of x is   

(i) sinm   

(ii) mx  

(iii) mx r  

(iv) 
2

mx r  

 

7. For a simple source of strength m  at the origin, the values of Stokes’ stream function at 

the point  , ,P r    is 

(i) sinm   

(ii) cosm   

(iii) sin2m   

(iv) cos2m   

 

8. The relation between   and   is   

(i)  y x and x y               

(ii)  y y and x y               

(iii)  y x and y y               

(iv) None of these. 

 

9. The family of curves given by .const   and .const   intersect at  
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(i) 30  

(ii) 45  

(iii) 60  

(iv) 90  

 

10. The stream function is constant along a particular streamline flow   

(i) False statement 

(ii) True statement 

(iii) Both of above 

(iv) None of these 

 

11. Determine the image of a line doublet parallel to the axis of a right circular cylinder. 

 

12. Two sources, each of strength m  are placed at the points    ,0 , ,0a a  and a sink of 

strength 2m  at the origin. Show that the streamlines are the curve  

   
2

2 2 2 2 2x y a x y xy    , where   is a variable parameter. 

13. Show that the image system of a source outside a circle consists of an equal source at the 

inverse point and an equal sink at the centre of the circle. 

 

14. An infinite mass of liquid is moving irrotationally and steadily under the influence of a 

source of strength   and an equal sink at a distance 2a  from it. Prove that the kinetic 

energy of the liquid which passes in unit time across the plane which bisects at right angles 

the line joining the source and sink is  3 48 7 ,a   being the density of the liquid. 

 

15. Show that the force per unit length exerted on a circular cylinder, radius a , due to a source 

of strength m , at a distance c  from the axis is    
2

2 2 2 22 m a c c a  . 

 

16. Show that the image with regard to a sphere of a doublet whose axis passes through the 

centre is a doublet at the inverse point. 
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17. Show that a uniform stream of velocity U  can be obtained as the limit a  of the field 

due to a source of strength 22 a U  at  ,0,0a  and a sink of strength 22 a U  at  ,0,0a

. 

 

11.15 ANSWERS 

 

1. (iii) 

2. (i) 

3. (iii) 

4. (ii) 

5. (i) 

6. (iii) 

7. (ii) 

8. (i) 

9. (iv) 

10. (i) 

11. 
 2

i ie e
w

z c a z c

   

 
 
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UNIT 12: RELATION BETWEEN CARTESIAN   

                              COMPONENTS 

 

CONTENTS: 

12.1     Introduction 

12.2     Objectives 

12.3     Relation Between Rectangular (Cartesian) Components of Stress 

12.4     Transnational motion of fluid element. 

12.5     Summary 

12.6     Glossary 

12.7     References Suggested reading 

12.8     Terminal questions 
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12.1   INTRODUCTION 

Before this unit we have studied the introduction of sources, sinks and doublets, images 

in rigid infinite plane, axis symmetric flows stoke stream function. In this unit we will read what 

is the difference between rectangular components of stress.  And we also discussed about 

transnational motion of fluid element. The components of a vector along orthogonal axes are 

called rectangular Cartesian components.  In a simple way when we break down a vector into its 

simplest parts along straight line (axes) that are at right angles to each other, we call those parts 

“rectangular components or cartesian components. Think of it like this imagine a vector as an 

arrow. We can split that arrow into two or three simpler arrows that point along straight lines 

(like the x and y axes on a graph). Those simpler arrows are the rectangular components. There 

are two ways to write these components one is using number only (scalar notation) and other is 

using letters and arrows (Cartesian vector notation). 

 

12.2 OBJECTIVES 

After studying this unit the learner will be able to 

(i) Find the relation between rectangular (Cartesian) components of stress. 

(ii) Explain transnational motion of fluid element. 

(iii) Describe the stress components in a real fluid. 

 

12.3 RELATION BETWEEN RECTANGULAR (CARTESIAN)  

      COMPONENTS OF STRESS 

 

Let us consider the motion of a small rectangular parallelepiped of viscous fluid, its centre being 

p (x, y ,z) and its edges of lengths 𝜌𝛿x, δy, δz, parallel to fixed Cartesian axes, as shown in the 

figure. 

    Let ρ be the density of the fluid. The mass 𝜌𝛿x, δy, δz of the fluid element remain constant 

and the element is presumed to move along with the fluid. In the figure, the pont P1 and P2 have 
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been taken on the centre of the faces so that they have co ordinates (x- 
𝛿x

2
, y, z) and (x+ 

𝛿x

2
, y ,z) 

respectively. 

At P (x, y, z) the force components parallel to OX, OY, OZ on the surface area   δy, δz through P 

and having i as unit are ( σxx, δy, δz,  σxy, δy, δz,   σxz δy, δz). 

At P2 (x + 
𝛿x

2
, y, z), since i is the unit normal measured outwards from the fluid, the 

corresponding force components across the parallel plane of area δy, δz, are 

 [σxx +
𝛿x

2
(d

σxx

dx
) δyδz,σxy +

𝛿x

2
(d

σxy

dx
) δyδz,σxy +

𝛿x

2
(d

σxx

dx
) δyδz,] 

         For the parallel plane through P1 (x- 
𝛿x

2
,y, z) since –i  is the unit normal drawn outward 

from the fluid element, the corresponding component are   

[−σxx −
𝛿x

2
(∂

σxx

∂x
) δyδz,  − σxy −

𝛿x

2
(∂

σxy

∂x
) δyδz, − σxz −

𝛿x

2
(∂

σxx

∂x
) δyδz,] 

 

The forces on the parallel plane through P1 and P2 are equivalent to a single force at P with 

components  

[
𝜕𝜎𝑥𝑥

𝜕𝑥
,
𝜕𝜎𝑥𝑦

𝜕𝑥
,
𝜕𝜎𝑥𝑧

𝜕𝑥
] δx,δyδz, 

Together with couples whose moments (upto third order  terms ) are 

{
−𝜎𝑥𝑥 𝛿𝑥 𝜎𝑦𝜎𝑧

  𝑎𝑏𝑜𝑢𝑡 𝑂𝑦,

 𝜎𝑥𝑦𝛿𝑥𝛿𝑦𝛿𝑧𝑎𝑏𝑜𝑢𝑡 𝑂𝑧
 

Similarly the pair of faces perpendicular to the y axis give a force at P having components 

[
𝜕𝜎𝑦𝑥

𝜕𝑥
,
𝜕𝜎𝑦𝑦

𝜕𝑦
,
𝜕𝜎𝑦𝑧

𝜕𝑦
] δx,δyδz, 

Together with couple of moments 

{
−𝜎𝑦𝑥 𝛿𝑥 𝜎𝑦𝜎𝑧

  𝑎𝑏𝑜𝑢𝑡 𝑂𝑦,

 𝜎𝑦𝑧𝛿𝑥𝛿𝑦𝛿𝑧𝑎𝑏𝑜𝑢𝑡 𝑂𝑧
 

The pair of faces perpendicular to the z- axis give a force at P having components  

 

[
𝜕𝜎𝑧𝑥

𝜕𝑧
,
𝜕𝜎𝑧𝑦

𝜕𝑧
,
𝜕𝜎𝑧𝑧

𝜕𝑧
] δx,δyδz, 

 

Together with couple of moments 
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{
−𝜎𝑧𝑦 𝛿𝑥 𝜎𝑦𝜎𝑧

  𝑎𝑏𝑜𝑢𝑡 𝑂𝑦,

 𝜎𝑧𝑥𝛿𝑥𝛿𝑦𝛿𝑧𝑎𝑏𝑜𝑢𝑡 𝑂𝑧
 

Combining the surface forces of all six faces of the parallelepiped, we observe that they reduce 

to a single force at P having the components 

[(
𝜕𝜎𝑥𝑥

𝜕𝑥
,

𝜕𝜎𝑦𝑧

𝜕𝑦
,

𝜕𝜎𝑧𝑥

𝜕𝑧
+) , (

𝜕𝜎𝑥𝑦

𝜕𝑥
,

𝜕𝜎𝑦𝑦

𝜕𝑦
,

𝜕𝜎𝑧𝑦

𝜕𝑧
+) , (

𝜕𝜎𝑥𝑧

𝜕𝑥
,

𝜕𝜎𝑦𝑧

𝜕𝑦
,

𝜕𝜎𝑧𝑧

𝜕𝑧
+)] δx,δyδz, 

Together with a vector couple having Cartesian   components 

[(𝜎𝑦𝑧 − 𝜎𝑧𝑦), (𝜎𝑧𝑥 − 𝜎𝑥𝑧), (𝜎𝑥𝑦 − 𝜎𝑦𝑥)]δx,δyδz, 

Now suppose the external body forces acting at P are [X, Y, Z] per unit mass, so that the total 

body force on the element has components [X, Y, X]  ρδ
x,

δyδz. Let us take moments about i- 

direction through P. then, we have 

 

                                                                                                                 

                                                                 Fig. 12.3.1 

Total moment of forces = moments of inertia about axis × angular acceleration  

i.e. ( 𝜎𝑦𝑧 − 𝜎𝑧𝑦 ) δx,δyδz, + terms of 4th order in δx,δy δz  = terms of 5th order in δx,δyδz.   
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thus, to the third of smallness in δx,δyδz  we obtain  

( 𝜎𝑦𝑧 − 𝜎𝑧𝑦 ) δx,δyδz  = 0  

 

Hence the considered fluid elements becomes vanishingly small, we obtain  

( 𝜎𝑦𝑧 = 𝜎𝑧𝑦  

Similarly, we get  

𝜎𝑧𝑥 = 𝜎𝑥𝑧 , 𝜎𝑥𝑦 = 𝜎𝑦𝑧 

Thus, the stress matrix is diagonally symmetric and contains only six unknowns. In other words, 

we have proved that 

Σij  = σji ,  (I, j = x,y,z) 

i.e. σij is symmetric.  

In fact, σij is a symmetric second order Cartesian tensor. 

 

12.4 TRANSNATIONAL MOTION OF FLUID ELEMENT 

Considering the surface forces and body forces, we note  (from the previous article) that 

the total force component in the i-direction, acting on the fluid elements at point P (x,y,z), is 

(
𝜕𝜎𝑥𝑥

𝜕𝑥
,

𝜕𝜎𝑦𝑧

𝜕𝑦
,

𝜕𝜎𝑧𝑥

𝜕𝑧
+) δx,δy, δz  + Xρδ

x,
δyδz,                                  (1) 

Where X, Y, Z is the body force per unit mass and ρ being the density of the viscous fluid. As 

the mass ρδ
x,

δyδz is considered constant , if q =

(u, v, w)be the velocity of point P at time   t, then the equation of motion in the i- direction is   

(
𝜕𝜎𝑥𝑥

𝜕𝑥
,

𝜕𝜎𝑦𝑧

𝜕𝑦
,

𝜕𝜎𝑧𝑥

𝜕𝑧
+) δx,δy, δz  + ρ X δ

x,
δyδz, = (ρ X δ

x,
δyδz) 

𝑑𝑢

𝑑𝑡
        (2) 

Or  (
𝜕𝜎𝑥𝑥

𝜕𝑥
,

𝜕𝜎𝑦𝑧

𝜕𝑦
,

𝜕𝜎𝑧𝑥

𝜕𝑧
+)+ ρ X  =  ρ 

𝑑𝑢

𝑑𝑡
                   (3)  

If u = u (x, y, z, t), then  

𝑑𝑢

𝑑𝑡
  = 

𝜕𝑢

𝜕𝑡
 + u 

𝜕𝑢

𝜕𝑥
  + 𝑣

𝜕𝑢

𝜕𝑦
   +  w 

𝜕𝑢

𝜕𝑧
           where 

𝑑

𝑑𝑡
   ≡    

𝜕

𝜕𝑡
  + q.δ         thus (3) becomes 
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𝜕𝑢

𝜕𝑡
 +u 

𝜕𝑢

𝜕𝑥
  + 𝑣

𝜕𝑢

𝜕𝑦
    + w

𝜕𝑢

𝜕𝑧
        = X + 

1

𝜌
    (

𝜕𝜎𝑥𝑥

𝜕𝑥
,

𝜕𝜎𝑦𝑧

𝜕𝑦
,

𝜕𝜎𝑧𝑥

𝜕𝑧
)        (4) 

Similarly, the equations of motion in k j and directions are  

                     
𝜕𝑣

𝜕𝑡
 +u 

𝜕𝑣

𝜕𝑥
  + 𝑣

𝜕𝑣

𝜕𝑦
    + w

𝜕𝑣

𝜕𝑧
    = Y +

1

𝜌
    (

𝜕𝜎𝑥𝑥

𝜕𝑥
,

𝜕𝜎𝑦𝑦

𝜕𝑦
,

𝜕𝜎𝑧𝑥

𝜕𝑧
)    (5) 

𝜕𝑤

𝜕𝑡
 +u 

𝜕𝑤

𝜕𝑥
  + 𝑣

𝜕𝑤

𝜕𝑦
    + w

𝜕𝑤

𝜕𝑧
    = Z +

1

𝜌
    (

𝜕𝜎𝑥𝑥

𝜕𝑥
,

𝜕𝜎𝑦𝑧

𝜕𝑦
,

𝜕𝜎𝑧𝑧

𝜕𝑧
)     (6) 

Equation (4) (5) (6) provide the equations of motion of the fluid element at P (x,y,z). 

In tensor form, if the coordinates are xi, the velocity component ui, the  body force components 

Xi, where I = 1, 2, 3 the equation of motion can be expressed as 

 
𝜕𝑢𝑖

𝜕𝑡
 + uj ui, j = Xi + 

1

𝜌
 σji, (i, j = 1,2,3). 

 

 

12.4.1 STRESS COMPONENTS IN A REAL FLUID 

Let δs be a small rigid plane area inserted at a point P in a viscous fluid Cartesian co-ordinates 

(x, y, z) are referred to a set of fixed axes OX, OY, OZ Suppose that  δFn is the force exerted by 

the moving fluid on one side of δs, the unit  vector n being taken to specify the normal at P to δs 

on this side. We know that in the case of an inviscit fluid, δFn is aligned with n. For a viscous 

fluid, however, frictional forces are called into play between the fluid and the surface so that δFn  

will also have a component tangential to δs. We suppose the Cartesian components of δFn to be  

(δFnx , δFny , δFnz ) so that 

δFn = δFnxi  + δFny j + δFnzk.                                                                                         

Then the components of stress parallel to the axes are defined to be σ nx , σ ny ,σ nz , where 

                           σ nx  = lim
𝜕𝑠−>0

𝜕𝐹𝑛𝑥

𝜕𝑠
 = 

𝑑𝐹𝑛𝑥

𝑑𝑠
 

                          σ ny    = lim
𝜕𝑠−>0

𝜕𝐹𝑛𝑦

𝜕𝑠
 = 

𝑑𝐹𝑛𝑦

𝑑𝑠
 

                          σ nz = lim
𝜕𝑠−>0

𝜕𝐹𝑛𝑧

𝜕𝑠
 = 

𝑑𝐹𝑛𝑧

𝑑𝑠
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 In the components σ nx, σ ny, σ nz, the first suffix n denotes the direction of the normal to the 

elemental plane δs whereas the second suffix x or y or z denotes the direction in which the 

component is measured 

 If we identify n in turn with the unit vectors and in i , j , and k  in OX, OY, OZ which is 

achieved by suitably re-orientating , we obtain the following three sets of stress components. 

                                σ xx, σ xy, σ xz; 

                               σ yx , σ yy , σ yz ; 

                               σ zx , σ zy , σ zz . 

The diagonal elements σ xx, σ yy, σ zz of this array are called normal or direct stresses. The 

remaining six elements are called shearing stresses. For an in viscid fluid, we have   

σ xx = σ yy = σ zz = -p 

σ xy = σ xz = σyx = σ yz = σ zx = σ zy =0 

Here, we consider the normal stresses as positive when they are tensile and negative when they 

are compressive, so that p is the hydrostatic pressure. The matrix 

                           [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

]                                                     (1) 

 

  is called the stress matrix. If its components are known, we can calculate the total forces on any 

area at any chosen point. The quantities σij (i, j = x, y, z) are called the components of the stress 

tensor, whose matrix is of the form (1). Further, we observe that σ ij is a tensor of order two. 

 To show that only six components suffice to determine the state of stress at a point 

As indicated in 1.4, the state of stress at a point is fully determined by nine components of the 

stress tensor:  However, as highlighted in 1.1, the stress tensor is symmetric, meaning the off-

diagonal components are equal. Therefore, only six components suffice to determine the state of 

stress at point. 
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12.5 SUMMARY 

Translational motion:  When an object moves in a straight line and every part of the object   

moves the same distance, in the same direction and at the same speed. 

In viscid   fluid: An viscid fluid is a fluid that has no thickness or resistance to flow. In other 

word it is a fluid that flows easily and smoothly, without any friction. 

 

12.6  GLOSSARY 

 

(i) Fluid 

(ii) Two-Dimensional Flow 

(iii) Cylindrical Polar Coordinates  

(iv) Viscous fluid: is a real fluid that flows with some resistance 

 in the opposite direction of its flow. 

(v) Operators           
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12.8 TERMINAL QUESTIONS 

1. How can a vector be determined when rectangular component are known? 

2. What is the difference between transnational and rotational motion. 

3. Define the Relation Between Rectangular Components of Stress. 

4.  Define Stress Components in A Real Fluid. 

5.  Explain transnational motion of fluid element. 
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UNIT 13: THE RATE OF STRAIN QUADRIC AND  

                 PRINCIPAL STRESSES AND ITS PROPERTY 

 

CONTENTS:  
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13.3    The rate of Strain Quadric and principal Stresses 

13.3.1 The rate of Strain Quadric  

13.3.2 Principal Stresses 

13.4     Some further properties of the rate of strain Quadric 

13.2.1 Definition 

13.2.2 Tensor Representation 

13.2.3 Strain Rate Components 

13.2.4 Strain Rate Quadric 

13.2.5 Eigenvalues and Eigenvectors 

13.2.6 Physical Interpretation 

13.5 Stress Analysis in fluid motion 

13.6 Relation between stress and rate of strain 

13.7 The coefficient of viscosity and Laminar flow 

13.8 The Navier-Stokes Equations of Motion of a viscous Fluid. 

13.9       Summary 

13.10  References and Suggested Readings 

13.11     Terminal questions 
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13.1 INTRODUCTION 

The strain rate at some point within the material measures the rate at which the distances 

of adjacent parcels of the material change with time in the neighborhood of that point. It 

comprises both the rate at which the material is expanding or shrinking (expansion rate), and 

also the rate at which it is being deformed by progressive shearing without changing its 

volume (shear rate). It is zero if these distances do not change, as happens when all particles 

in some region are moving with the same velocity (same speed and direction) and/or rotating 

with the same angular velocity, as if that part of the medium were a rigid body. 

13.2 OBJECTIVES 

    

 After completion of this unit learners will be able to: 

(i) Principal Stresses 

(ii) Stress Analysis in fluid motion 

(iii) The Navier-Stokes Equations of Motion of a viscous Fluid. 

 

13.3 THE RATE OF STRAIN QUADRIC AND PRINCIPAL    

STRESSES 

    

13.3.1 The rate of Strain Quadric: 

The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, 

who defined it as "the rate at which strain occurs. It is the time rate of change of strain." 

In physics the strain rate is generally defined as the derivative of the strain with respect to time. 

Its precise definition depends on how strain is measured. 

The strain is the ratio of two lengths, so it is a dimensionless quantity (a number that does not 

depend on the choice of measurement units). Thus, strain rate has dimension of inverse time and 

units of inverse second, s−1 (or its multiples). 

 

https://en.wikipedia.org/wiki/Compression_(physical)
https://en.wikipedia.org/wiki/Shear_stress
https://en.wikipedia.org/wiki/Shear_rate
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Angular_velocity
https://en.wikipedia.org/wiki/Rigid_body
https://en.wikipedia.org/wiki/Physics
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In mechanics and materials science, strain rate is the time derivative of strain of a material. 

Strain rate has dimension of inverse time and SI units of inverse second, s−1 (or its multiples). 

The strain rate at some point within the material measures the rate at which the distances of 

adjacent parcels of the material change with time in the neighborhood of that point. It comprises 

both the rate at which the material is expanding or shrinking (expansion rate), and also the rate 

at which it is being deformed by progressive shearing without changing its volume (shear rate). 

It is zero if these distances do not change, as happens when all particles in some region are 

moving with the same velocity (same speed and direction) and/or rotating with the same angular 

velocity, as if that part of the medium were a rigid body. 

The strain rate is a concept of materials science and continuum mechanics that plays an essential 

role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, 

the viscous stress is a linear function of the rate of strain, defined by two coefficients, one 

relating to the expansion rate (the bulk viscosity coefficient) and one relating to the shear rate 

(the "ordinary" viscosity coefficient). In solids, higher strain rates can often cause 

normally ductile materials to fail in a brittle manner.  

 

13.3.2 Principal Stresses 

Principal stress is the normal stress acting onto the principal plane that has zero shear 

stress. 

                      

Figure 1 
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The above figure. A show the member subjected to the axial stresses as well as shear 

stresses and figure-B shows the principal stresses and principal planes. 

A principal plane is an oblique plane in an object that bears no shear stress. The 

principal planes lie at a principal angle (𝜃𝑝) from the reference plane as shown in 

figure-B and there is no shear stress acts on it. 

The normal stresses acting on that plane (σ1 and σ2) are the principal stresses. 

            

Figure 2 

 

 

Principal stress explanation:          

The member shown in the figure. A is subjected to the axial stresses in the x and 

y direction  ,x y   and complementary shear stresses on horizontal and vertical 

planes  ,xy yx  . 

Other than horizontal and vertical planes, the member has numerous inclined 

planes that are inclined at an angle θ (0° to 90°) from the reference plane. These 

planes are known as oblique planes. 

 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                                                                   208 
 

13.4 SOME FURTHER PROPERTIES OF THE RATE OF  

        STRAIN QUADRIC 

Strain is a unitless measure of how much an object gets bigger or smaller from an applied load. 

Normal strain occurs when the elongation of an object is in response to a normal stress (i.e. 

perpendicular to a surface), and is denoted by the Greek letter epsilon. A positive value 

corresponds to a tensile strain, while negative is compressive. 

 

Figure 3 

The rate of strain quadric is a concept from fluid dynamics and continuum 

mechanics that helps in visualizing and analyzing the deformation of fluid 

elements. It is particularly useful in understanding the local flow properties and 

the nature of strain in a fluid. Here are the key properties and aspects of the rate 

of strain quadric: 

13.4.1 Definition 

The rate of strain quadric is defined by the symmetric part of the velocity gradient 

tensor, also known as the rate of deformation tensor D, which is given by: D= 

1

2
(∇𝑣 + (∇𝑣)𝑇)          where v is the velocity field of the fluid. 

13.4.2 Tensor Representation 

The rate of strain tensor D can be written in matrix form as: 
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xx xy xz

yx yy yz

zx zy zz

D D D

D D D

D D D

 
 
 
 
 

 

Since D is symmetric, ij jiD D  

13.4.3 Strain Rate Components 

The components of the rate of strain tensor represent the rate of change of 

deformation in various directions: 

 ,xx yy zzD D and D   are the normal strain rates in the x, y and z directions, respectively. 

 ,xy yx xz zx yz zyD D D D and D D    are the shear strain rates, which describe the 

rate of change of the angle between the axes. 

13.4.4  Strain Rate Quadric 

The rate of strain quadric is a geometric representation of the strain rate tensor. It 

is given by the quadratic form: ( ) TQ x x Dx  where x is a position vector. The 

quadric provides a visualization of the strain rates in different directions. 

13.4.5 Eigenvalues and Eigenvectors 

The principal strain rates and principal directions can be determined by finding 

the eigenvalues and eigenvectors of D: 

 The eigenvalues 1 2 3, , and   of D represent the principal strain rates. 

 The corresponding eigenvectors give the directions of the principal strains. 

13.4.6 Physical Interpretation 

 Normal Strain Rates: The principal strain rates (eigenvalues) describe the 

rate at which material elements expand or contract along the principal 

directions. 
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 Shear Strain Rates: Off-diagonal elements represent the rate at which the 

shape of the material element is distorted without a change in volume. 

The rate of strain quadric can be visualized as an ellipsoid, with the lengths of the 

principal axes of the ellipsoid proportional to the principal strain rates. The 

orientation of the axes represents the principal directions of strain. 

Understanding the rate of strain quadric is essential in fields such as: 

 Fluid mechanics, for analyzing flow patterns and turbulence. 

 Continuum mechanics, for studying material deformation. 

 Structural engineering, for assessing stress and strain in materials. 

The rate of strain quadric provides a comprehensive framework for analyzing the 

deformation characteristics of fluid elements. It encapsulates both normal and 

shear strain rates, offering insights into the local behavior of the flow and the 

nature of material deformation. 

13.5 STRESS ANALYSIS INFLUID MOTION: 

Stress–strain analysis (or stress analysis) is an engineering discipline that uses 

many methods to determine the stresses and strains in materials and structures 

subjected to forces. In continuum mechanics, stress is a physical quantity that 

expresses the internal forces that neighboring particles of a continuous 

material exert on each other, while strain is the measure of the deformation of the 

material. 

In simple terms, we can define stress as the force of resistance per unit area, 

offered by a body against deformation. Stress is the ratio of force over area (S = 

R/A, where S is the stress, R is the internal resisting force and A is the cross-

sectional area). 
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 Strain is the ratio of change in length to the original length, when a given body 

is subjected to some external force (Strain = change in length ÷ the original 

length). 

Stress analysis is a primary task for civil, mechanical and aerospace 

engineers involved in the design of structures of all sizes, such 

as tunnels, bridges and dams, aircraft and rocket bodies, mechanical parts, and 

even plastic cutlery and staples. Stress analysis is also used in the maintenance of 

such structures, and to investigate the causes of structural failures. 

Typically, the starting point for stress analysis are a geometrical description of the 

structure, the properties of the materials used for its parts, how the parts are joined, 

and the maximum or typical forces that are expected to be applied to the structure. 

The output data is typically a quantitative description of how the applied forces 

spread throughout the structure, resulting in stresses, strains and the deflections 

of the entire structure and each component of that structure. The analysis may 

consider forces that vary with time, such as engine vibrations or the load of 

moving vehicles. In that case, the stresses and deformations will also be functions 

of time and space. 

In engineering, stress analysis is often a tool rather than a goal in itself; the 

ultimate goal being the design of structures and artifacts that can withstand a 

specified load, using the minimum amount of material or that satisfies some other 

optimality criterion. 

Stress analysis may be performed through classical mathematical techniques, 

analytic mathematical modelling or computational simulation, experimental 

testing, or a combination of methods. 

The term stress analysis is used throughout here for the sake of brevity, but it 

should be understood that the strains, and deflections of structures are of equal 
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importance and in fact, an analysis of a structure may begin with the calculation 

of deflections or strains and end with calculation of the stresses. 

General principles 

Stress analysis is specifically concerned with solid objects. The study of stresses 

in liquids and gases is the subject of fluid mechanics. 

Stress analysis adopts the macroscopic view of materials characteristic 

of continuum mechanics, namely that all properties of materials are homogeneous 

at small enough scales. Thus, even the smallest particle considered in stress 

analysis still contains an enormous number of atoms, and its properties are 

averages of the properties of those atoms. 

In stress analysis one normally disregards the physical causes of forces or the 

precise nature of the materials. Instead, one assumes that the stresses are related 

to strain of the material by known constitutive equations. 

By Newton's laws of motion, any external forces that act on a system must be 

balanced by internal reaction forces, or cause the particles in the affected part to 

accelerate. In a solid object, all particles must move substantially in concert in 

order to maintain the object's overall shape. It follows that any force applied to 

one part of a solid object must give rise to internal reaction forces that propagate 

from particle to particle throughout an extended part of the system. With very rare 

exceptions (such as ferromagnetic materials or planet-scale bodies), internal 

forces are due to very short range intermolecular interactions, and are therefore 

manifested as surface contact forces between adjacent particles — that is, as 

stress.  

Fundamental problem 
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The fundamental problem in stress analysis is to determine the distribution of 

internal stresses throughout the system, given the external forces that are acting 

on it. In principle, that means determining, implicitly or explicitly, the Cauchy 

stress tensor at every point.  

The external forces may be body forces (such as gravity or magnetic attraction), 

that act throughout the volume of a material; or concentrated loads (such as 

friction between an axle and a bearing, or the weight of a train wheel on a rail), 

that are imagined to act over a two-dimensional area, or along a line, or at single 

point. The same net external force will have a different effect on the local stress 

depending on whether it is concentrated or spread out. 

 

 

13.6 RELATION BETWEEN STRESS AND RATE OF STRAIN 

 

The relationship between stress and rate of strain is a fundamental concept in the study 

of materials and their deformation behavior, particularly in the field of rheology and solid 

mechanics. 

Stress and Strain 

Stress (σ): It is the internal force per unit area within a material. It is typically measured 

in Pascals (Pa). 

Strain (ϵ): It is the deformation or displacement of material per unit length. It is a 

dimensionless quantity. 

Rate of Strain (ϵ˙) 

The rate of strain, also known as the strain rate, is the rate at which strain occurs. It 

is the derivative of strain with respect to time: ϵ˙= dϵ / dt. The relationship between stress 

and rate of strain varies depending on the type of material and its behavior under stress. 



FLUID MECHANICS  MAT 604 

DEPARTMENT OF MATHEMATICS 

UTTARAKHAND OPEN UNIVERSITY                                                                                   214 
 

The relationship between stress and rate of strain varies depending on the type of 

material and its behavior under stress. 

Elastic Materials 

For perfectly elastic materials (e.g., Hookean solids), the relationship is typically 

between stress and strain, not the rate of strain. Hooke's Law describes this 

relationship: σ = E⋅ϵ  

where E is the Young's modulus of the material. 

Viscous Fluids 

For purely viscous fluids (e.g., Newtonian fluids), the stress is proportional to the 

rate of strain: σ = η⋅ϵ˙ where η is the viscosity of the fluid. 

Viscoelastic Materials 

Viscoelastic materials exhibit both elastic and viscous behavior. The relationship 

between stress and strain rate for such materials can be more complex and is often 

described using models that combine elements of both elasticity and viscosity. 

Two common models are: 

 

Maxwell Model: It combines a purely viscous damper and a purely elastic spring 

in series. 

Kelvin-Voigt Model: It combines a purely viscous damper and a purely elastic 

spring in parallel. 

 

13.7 THE COEFFICIENT OF VISCOSITY AND LAMINAR    

        FLOW 

 

When you pour yourself a glass of juice, the liquid flows freely and quickly. 

But when you pour syrup on your pancakes, that liquid flows slowly and sticks to 

the pitcher. The difference is fluid friction, both within the fluid itself and between 
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the fluid and its surroundings. We call this property of fluids viscosity. Juice has 

low viscosity, whereas syrup has high viscosity. In the previous sections we have 

considered ideal fluids with little or no viscosity.  

The precise definition of viscosity is based on laminar, or nonturbulent, flow. 

Before we can define viscosity, then, we need to define laminar flow and turbulent 

flow. Figure shows both types of flow. Laminar flow is characterized by the 

smooth flow of the fluid in layers that do not mix. Turbulent flow, or turbulence, 

is characterized by eddies and swirls that mix layers of fluid together. 

 

Figure 4 

Figure Smoke rises smoothly for a while and then begins to form swirls and 

eddies. The smooth flow is called laminar flow, whereas the swirls and eddies 

typify turbulent flow. If you watch the smoke (being careful not to breathe on it), 

you will notice that it rises more rapidly when flowing smoothly than after it 

becomes turbulent, implying that turbulence poses more resistance to flow. 

(Credit: Creativity103) 
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Figure shows schematically how laminar and turbulent flow differ. Layers flow 

without mixing when flow is laminar. When there is turbulence, the layers mix, 

and there are significant velocities in directions other than the overall direction of 

flow. The lines that are shown in many illustrations are the paths followed by 

small volumes of fluids. These are called streamlines. Streamlines are smooth and 

continuous when flow is laminar, but break up and mix when flow is turbulent. 

Turbulence has two main causes. First, any obstruction or sharp corner, such as 

in a faucet, creates turbulence by imparting velocities perpendicular to the flow. 

Second, high speeds cause turbulence. The drag both between adjacent layers of 

fluid and between the fluid and its surroundings forms swirls and eddies, if the 

speed is great enough.  

 

Figure 5 

Figure (a) Laminar flow occurs in layers without mixing. Notice that viscosity 

causes drag between layers as well as with the fixed surface. (b) An obstruction 

in the vessel produces turbulence. Turbulent flow mixes the fluid. There is more 

interaction, greater heating, and more resistance than in laminar flow. 

 

13.8 THE NAVIER-STOKES EQUATIONS OF MOTION OF A  

       VISCOUS FLUID 
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Fluid mechanics is the field of physics that deals with the physical mechanics 

of fluids (plasmas, gases, and liquids) and forces acting on them. It has a wide 

variety of applications in fields like engineering, oceanography, astrophysics, 

geophysics, biology, and meteorology. Fluid mechanics can be categorized into 

fluid statics and fluid mechanics. Fluid statics is the study of fluids at the state of 

rest. Fluid dynamics is the study of the impacts of forces on fluids in motion. It is 

a section of continuum mechanics, a field that deals with the matter without 

concerning the information that comes out of the inherent properties of atoms. It 

only models matter from a macroscopic perspective rather than from an atomic or 

molecular viewpoint. 

Fluid dynamics is a prolific research field which is generally mathematically 

complex. Numerous problems are wholly or partly unsolved and are efficiently 

addressed by numerical techniques, usually using computers. A cutting-edge 

discipline known as computational fluid dynamics is dedicated to this approach. 

Particle image velocimetry is an experimental technique for analyzing and 

visualizing the flow of fluids. It also takes into account the visual nature of the 

fluid flow. 

In fluid mechanics, the Navier-Stokes equations are partial differential equations that 

express the flow of viscous fluids. These equations are generalizations of the equations 

developed by Leonhard Euler (18th century) to explain the flow of frictionless and 

incompressible fluids. In 1821, Claude-Louis Navier put forward the component of 

viscosity (friction) for a more realistic and difficult problem of viscous fluids. During the 

entire middle period of the 19th century, George Gabriel Stokes refined this work even 

though entire solutions were found only in the case of basic two-dimensional flows. The 

complicated turbulence or vortices, or chaos that happens in three-dimensional fluid 

flows as velocities rise, has become intractable to any but numerical analysis techniques. 

The Navier–Stokes equations numerically describe the conservation of mass and the 

conservation of momentum for Newtonian fluids. 

https://byjus.com/physics/fluid-dynamics/
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13.9 SUMMARY 

 

 This unit explains the following topics: 

(i)  Stress Analysis in fluid motion 

(ii) Relation between stress and rate of strain 

(iii) The coefficient of viscosity and Laminar flow 
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https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Frank+M.+White%22&source=gbs_metadata_r&cad=2
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13.11 TERMINAL QUESTIONS 

Question 1. Which is the most important property used in the rolling process? 

(a) Toughness 

(b) Hardness 

(c) Resilience 

(d) Ductility 

                Answer: (d) 

 

Question 2. Which of the following material does not have a linear portion in the stress-strain   

                     curve?  

(a) Steel 

(b) Magnesium 

(c) Grey cast iron 

(d) Aluminum 

                Answer: (c) 

 

Question 3. Calculate the maximum shear strain at the point where principal strains are   

                      100 × 10−6 and −200 × 10−6. 

Answers: 200 × 10−6. 

 

    Question 4. Define Relation between stress and rate of strain. 

 

    Question 5. Define coefficient of viscosity and Laminar flow. 

    Question 6. Define Stress Analysis in fluid motion. 
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UNIT 14: STOKES FUNCTION 

CONTENTS: 

14.1      Introduction 

14.2      Objectives 

14.3      Stoke’s Stream Function Stokes function  

14.4      Property of Stokes function 

14.5       Image of source relative to sphere 

14.6       Image of doublet relative to sphere 

14.7       Examples  

14.8       Summary 

  14.9      Glossary 

14.1 0    References Suggested reading  

 14.11     Terminal questions 
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14.1   INTRODUCTION 

In fluid dynamics, the Stokes stream function is used to describe 

the streamlines and flow velocity in a three-dimensional incompressible 

flow with axisymmetry. A surface with a constant value of the Stokes stream function 

encloses a streamtube, everywhere tangential to the flow velocity vectors. Further, 

the volume flux within this streamtube is constant, and all the streamlines of the flow 

are located on this surface. 

 

14.2 OBJECTIVES 

After studying this unit the learner will be able to 

(i) Stoke’s Stream Function Stokes function. 

(ii) Image of source relative to sphere 

(iii) Image of doublet relative to sphere 

 

14.3 STOKE’S STREAM FUNCTION 

The Stokes stream function is a mathematical representation of 

the trajectories of particles in a steady flow of fluid over an object. It is 

used to describe the streamlines and flow velocity in a three-dimensional 

incompressible flow with axisymmetry. A surface with a constant value 

of the Stokes stream function encloses a streamtube, everywhere 

tangential to the flow velocity vectors. The stream function depends on 

the position of the arbitrary point, and, possibly, on that of the fixed 

point.  

Stokes flow also named creeping flow or creeping motion is a type of 

fluid flow where advective inertial forces are small compared with 

viscous forces. The Reynolds number is low, i.e. Re <<1. This is a 

typical situation in flows where the fluid velocities are very slow, the 

viscosities are very large, or the length-scales of the flow are very small. 

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
https://en.wikipedia.org/wiki/Flow_velocity
https://en.wikipedia.org/wiki/Incompressible_flow
https://en.wikipedia.org/wiki/Incompressible_flow
https://en.wikipedia.org/wiki/Axisymmetry
https://en.wikipedia.org/wiki/Streamtube
https://en.wikipedia.org/wiki/Tangential
https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Flux
https://www.bing.com/ck/a?!&&p=6252faa398535362JmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3MA&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3Rva2VzX3N0cmVhbV9mdW5jdGlvbg&ntb=1
https://www.bing.com/ck/a?!&&p=6252faa398535362JmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3MA&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3Rva2VzX3N0cmVhbV9mdW5jdGlvbg&ntb=1
https://www.bing.com/ck/a?!&&p=6252faa398535362JmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3MA&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3Rva2VzX3N0cmVhbV9mdW5jdGlvbg&ntb=1
https://www.bing.com/ck/a?!&&p=eb0a94f542abb5ecJmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3Mg&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3Rva2VzX3N0cmVhbV9mdW5jdGlvbg&ntb=1
https://www.bing.com/ck/a?!&&p=eb0a94f542abb5ecJmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3Mg&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3Rva2VzX3N0cmVhbV9mdW5jdGlvbg&ntb=1
https://www.bing.com/ck/a?!&&p=eb0a94f542abb5ecJmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3Mg&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3Rva2VzX3N0cmVhbV9mdW5jdGlvbg&ntb=1
https://www.bing.com/ck/a?!&&p=ba0770694d677c88JmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3NA&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9mYXJzaWRlLnBoLnV0ZXhhcy5lZHUvdGVhY2hpbmcvMzM2TC9GbHVpZGh0bWwvbm9kZTk2Lmh0bWw&ntb=1
https://www.bing.com/ck/a?!&&p=ba0770694d677c88JmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3NA&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9mYXJzaWRlLnBoLnV0ZXhhcy5lZHUvdGVhY2hpbmcvMzM2TC9GbHVpZGh0bWwvbm9kZTk2Lmh0bWw&ntb=1
https://www.bing.com/ck/a?!&&p=ba0770694d677c88JmltdHM9MTcyMzg1MjgwMCZpZ3VpZD0wMDdjMjAyMC0wMzBmLTZkZTgtMWM3YS0yZjk3MDI0ZDZjYTcmaW5zaWQ9NTY3NA&ptn=3&ver=2&hsh=3&fclid=007c2020-030f-6de8-1c7a-2f97024d6ca7&psq=stokes+stream+function&u=a1aHR0cHM6Ly9mYXJzaWRlLnBoLnV0ZXhhcy5lZHUvdGVhY2hpbmcvMzM2TC9GbHVpZGh0bWwvbm9kZTk2Lmh0bWw&ntb=1
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Creeping flow was first studied to understand lubrication. In nature, this 

type of flow occurs in the swimming of microorganisms and sperm. In 

technology, it occurs in paint, MEMS devices, and in the flow of viscous 

polymers generally. 

If  the  streamlines in all the planes passing through a given axis are the 

same,  the fluid motion is said to be axi-symmetric.  We have already 

considered such flow for irrotational motion in spherical polar co-

ordinates. (𝑟, 𝜃, 𝜑)  in which the line , 𝜃 =  0  is the axis of symmetry. 

 

Suppose the z-axis be taken as axis of symmetry, then 𝑞θ = 0   and the 

fluid motion is the same in every plane  𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (meridian plane) 

and suppose that a point P in the fluid may be specified by cylindrical 

polar co-ordinates (𝑟, 𝜃, 𝑧)  .  Thus, all the quantities associated with the 

flow are independent of  𝜃 . The equation of continuity in cylindrical co-

ordinates, becomes 

                                                                      
𝜕

𝜕𝑟
(𝑟𝑞𝑟) +

𝜕

𝜕𝑧
(𝑟𝑞𝑧) = 0    

i.e.                                             
𝜕

𝜕𝑟
(𝑟𝑞𝑟) = −

𝜕

𝜕𝑧
(𝑟𝑞𝑧)                            (1) 

 

This is the condition of exactness of the differential equation   

                                                     𝑟𝑞𝑟𝑑𝑧 −  𝑟𝑞𝑧𝑑𝑟 =0                              (2) 

       This means that (2) is an exact differential equation and let L.H.S. be an exact       

        differential  𝑑𝜑(say) 

        Therefore,   

      𝑟𝑞𝑟𝑑𝑧 −  𝑟𝑞𝑧𝑑𝑟 = 𝑑𝜑 =
𝜕𝜑

𝜕𝑟
 𝑑𝑟 +  

𝜕𝜑

𝜕𝑧
 𝑑𝑧 

        which gives          
𝜕𝜑

𝜕𝑟
 = 𝑟𝑞𝑧 , 

𝜕𝜑

𝜕𝑧
=  𝑟𝑞𝑟                                                  (3)  

        The function  𝜑 in (3) is called Stoke’s stream function. 

        The equation of streamlines in the meridian plane 𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  at a fixed     

         time t is  

                           
𝑑𝑧

𝑞𝑧
 =

𝑑𝑟

 𝑞𝑟
 

                                                                   𝑞𝑧 dr = 𝑞𝑟𝑑𝑧 

         Using (3), we get   
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                                                       -
1

𝑟
  

𝜕𝜑

𝜕𝑟
 𝑑𝑟 =

1

𝑟
 
𝜕𝜑

𝜕𝑧
 𝑑𝑧  

                                                                 
𝜕𝜑

𝜕𝑟
 𝑑𝑟 +  

𝜕𝜑

𝜕𝑧
 𝑑𝑧 = 0 

                                           d𝜑 = 0 

                                            𝜑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐶 

        which represent the streamlines. 

 

 

14.4 PROPERTY OF STOKES FNUCTION 

In fluid dynamics and potential theory, the Stokes function refers to a 

fundamental solution to the Stokes equations, which describe the motion of a 

viscous fluid. Here's a key property of the Stokes function: 

 

Green’s Function property 

The Stokes function serves as a Green's function for the Stokes equations in certain 

domains. Specifically, it satisfies the following integral equation: 

2( , ) ( ) ( )
V

G x y u y dy u x   

 G(x,y) is the Stokes function, representing the velocity field generated by a point 

force or source located at 𝑦 in a viscous fluid. 

 
2 ( )u y is the Laplacian of the velocity field 𝑢(𝑦). 

 𝑢(𝑥) is the velocity field at the point 𝑥. 

This property essentially states that the Stokes function (𝑥,𝑦) acts as an inverse 

operator to the Laplacian 
2 . It provides a solution to the problem of finding the 

velocity field 𝑢(𝑥) in a viscous fluid due to a localized source or force at 𝑦. 

Moreover, the Stokes function typically satisfies additional conditions such as 

boundary conditions specific to the problem domain, ensuring that it accurately 

represents the physical behavior of the fluid flow. It is a fundamental tool in the 

theoretical and computational study of viscous fluid flows, used extensively in 

problems ranging from fluid dynamics to biological fluid mechanics and 

microfluidics.  
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14.5 IMAGE OF A SOURCE IN A SPHERE 

 

Suppose a source of strength m is situated at point A at a distance f( > a) from the 

centre of the sphere of radius a. 

 Let B be the inverse point of A w.r.t. the sphere, then OB = 𝑎
2

𝑓⁄     

 

 

 

Figure 1 

 

The velocity potential at P(𝑟, 𝜃, 𝜑)  in the fluid due to a simple source of strength m  at 

A(f, 0, 0) is 

 ∅(𝑟, 𝜃) =
𝑚

𝐴𝑃
 

From  ∆𝑂𝐴𝑃, cos 𝜃 =  
(𝑂𝑃)2+(𝑂𝐴)2−(𝐴𝑃)2

2(𝑂𝑃)(𝑂𝐴)
=  

(𝑟)2+(𝑓)2−(𝐴𝑃)2

2(𝑟)(𝑓)
 

 

                                            AP= √(𝑟)2 + (𝑓)2 − 2𝑟𝑓𝑐𝑜𝑠𝜃 

Thus, the velocity potential  is  

∅(𝑟, 𝜃) = 𝑚((𝑟)2 + (𝑓)2 − 2𝑟𝑓𝑐𝑜𝑠𝜃)−1/2 

 

Introducing a solid sphere in the region   r ≤ 𝑎 , where  a < f, we obtain on using 

Weiss’s sphere theorem, a perturbation potential 
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𝑎

𝑟
∅ (

𝑎2

𝑟
, 𝜃) −

1

𝑎
∫ ∅(𝑅, 𝜃)𝑑𝑅

𝑎2/𝑟

0
 

i.e.            
𝑎𝑚

𝑟
[

𝑎4

𝑟2 + 𝑓2 − 2
𝑎2

𝑟
𝑓𝑐𝑜𝑠𝜃]

−1/2

-
𝑚

𝑎
∫ [(𝑅)2 + (𝑓)2 − 2𝑅𝑓𝑐𝑜𝑠𝜃]−1/2𝑑𝑅

𝑎2/𝑟

0
 

i.e  
.   (ma/f)

√𝑟2−2𝑟(
𝑎2

𝑓
)𝑐𝑜𝑠𝜃+(

𝑎2

𝑓
)2

 -  
𝑚

𝑎
∫

𝑑𝑅

√[(𝑅)2+(𝑓)2−2𝑅𝑓𝑐𝑜𝑠𝜃]

𝑎2/𝑟

0
 

  

 This shows that the image system of a point source of strength m placed at distance  

f(> a) from the centre of solid sphere consists of a source of strength  
𝑚𝑎

𝑓
  at the inverse 

point  𝑎2

𝑓⁄    in the sphere, together with a continuous line distribution of sinks of 

uniform strength 
𝑚

𝑎
 per unit length extending from the centre to the inverse point. 

 

 

14.6 IMAGE OF A DOUBLET IN A SPHERE WHEN THE 

AXIS OF THE DOUBLET PASSES THROUGH THE 

CENTRE OF THE SPHERE 

Let us consider a doublet AB with its axis 𝐵𝐴̅̅ ̅̅  pointing towards the centre 0 of a 

sphere of radius a.  Let OA = f, OB = f+𝛿𝑓. Let A’,B’ be the inverse points of A & B  

in the sphere so that  

 

 

Figure 2 
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At A, B we associate simple sources of strengths m and –m so that the strength of the 

double  is 𝜇 = 𝑚𝛿𝑓 , where 𝜇  is to remain a finite non-zero constant as m→

∞ 𝑎𝑛𝑑 𝛿𝑓 → 0 simultaneously. 

B’A’=OA’-OB’= 
𝑎2

𝑓
−

𝑎2

f+𝛿𝑓
=

𝑎2

𝑓
((1 +

𝛿𝑓

𝑓
)

−1

) 

                = 
𝑎2

𝑓
 - 

𝑎2

𝑓
+ 

𝑎2

𝑓
 
𝛿𝑓

𝑓
  to the first order 

                 =
𝑎2

𝑓2 𝛿𝑓  to the first order 

 

Now, from the case of “Image of source in a sphere”, the image of m at A consists of m 

at A consists of 
𝑚𝑎

𝑓
 at A’  together with a continuous line distribution from O to A of 

sinks of strength 
𝑚

𝑎
  per unit length and the image of –m at B consists of −

𝑚𝑎

f+𝛿𝑓
  at B’ 

together with a continuous line distribution from O to B of sources of strength  
𝑚

a
  per 

unit length.  

The line distribution of sinks and sources from 0 to B’ cancel each other  leaving 

behind a line distribution of sinks of strength 
𝑚

a
 per unit length from B’ to A’ i.e.  sink 

of strength 
𝑚

a
  B’A’= 

𝑚

a
 (

𝑎2

𝑓2 𝛿𝑓) =
𝑎

𝑓2
(𝑚𝛿𝑓) =

𝜇𝑎

𝑓2   at B’. The source at B’ is of 

strength  

                              −
𝑚𝑎

f+𝛿𝑓
 = 

−𝑚𝑎

𝑓
((1 +

𝛿𝑓

𝑓
)

−1

) =  = 
−𝑚𝑎

𝑓
(1 −

𝛿𝑓

𝑓
)  ,                

to the first order terms  

                                           =
−𝑚𝑎

𝑓
+

𝑚𝑎

𝑓2 𝛿𝑓 =
−𝑚𝑎

𝑓
+

𝜇𝑎

𝑓2 

Which is equivalent to a sink  
𝑚𝑎

𝑓
  at B’ and a source  

𝜇𝑎

𝑓2   at B’. 

 As there is already a sink 
𝜇𝑎

𝑓2  at B’,  therefore source and sink at B neutralize. 

Finally, we are left with source 
𝑚𝑎

𝑓
  at A’ and a sink.f ma  and a sink. 

𝑚𝑎

𝑓
  at B. Thus, to 

the first order, we obtain a doublet at A’ of strength  

                                       
𝑚𝑎

𝑓
(B’A’)=  

𝑚𝑎

𝑓

𝑎2

𝑓2 𝛿𝑓   

                                                     = 
𝑚𝑎3

𝑓3 𝛿𝑓  = 
𝜇𝑎3

𝑓3   . 
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 Hence in the limiting case as 𝛿𝑓 → 0 𝑎𝑛𝑑  m→ ∞ , we obtain a double at A of strength 

𝜇  with its axis towards O, together with a doublet at the inverse point A’ of strength  

𝜇𝑎3

𝑓3  with its axis away from O. 

 

14.7 EXAMPLES 

 

EXAMPLE1: In a flow field, the velocity components were evaluated as 

  u = a(x2-y2), v = -2axy, w = 0. 

 

Check whether you can form a stream function for this flow field. If so, what is the 

stream function? 

SOLUTION:  

Given: u = a(x2-y2),  v = - 2axy,  w = 0. 

As w = 0, the flow is 2-dimensional, we need to check whether the flow is 

incompressible. 

(Note: For incompressible fluid  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ) 

                                          
𝜕𝑢

𝜕𝑥
= 2𝑎𝑥,    

𝜕𝑣

𝜕𝑦
= −2𝑎𝑥 

𝑠𝑜,
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

That is fluid is incompressible and the continuity equation   
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 is satisfied. 

Therefore, we can define the scalar stream function 𝜓 for the given problem. 

 

As   u=  
𝜕𝜑

𝜕𝑦
 = a(x2-y2) 

⇒ 𝜑 =  ∫ 𝑢 𝑑𝑦 + 𝑓(𝑥) 

⇒ 𝜑 =  𝑎𝑥2y- a 
𝑦3

3
 + f(x)                                                                              …..(1) 

⇒ 
𝜕𝜑

𝜕𝑥
 = 2axy+ f’(x)                                                                                       …..(2) 
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You know v=- 
𝜕𝜑

𝜕𝑥
 = -2axy 

 

⇒ 
𝜕𝜑

𝜕𝑥
 = 2axy 

Here in (2) f’(x)=0 

 

Or, f(x)= Constant C  

⇒ 𝜑 =  𝑎𝑥2y- a 
𝑦3

3
 + C 

 

EXAMPLE 2: A stream function is given by   3x 2  y 3. 

Determine the magnitude of velocity components at the point (3,1). 
 

SOLUTION: The x and y components of velocity are given by 

x- component:    u=  
𝜕𝜑

𝜕𝑦
 = 

𝜕(3𝑥2−𝑦3)

𝜕𝑦
 = - 3𝑦2                                            …(1) 

y – component: v= - 
𝜕𝜑

𝜕𝑥
 =- 

𝜕(3𝑥2−𝑦3)

𝜕𝑥
 = - 6x                                              …(2) 

At the point (3,1) 

U=-3 and   v= -18 

and the total velocity is the vector sum of the two components. 

V= -3 𝔦- 18 𝑗 

Note that 𝜕𝑢 𝜕𝑥 = 0⁄  and 𝜕𝑣 𝜕𝑦⁄ =0, so that 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

Therefore the given stream function satisfies the continuity equation. 

 

The equation for vorticity, 

 𝜀 = 
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
                                                                                 …(3) 

may also be expressed in terms of  by substituting Eqs. (1) and (2) into Equ. (3) 

  

𝜀 = 
𝜕2𝜑

𝜕𝑥2 −
𝜕2𝜑

𝜕𝑦2 

However, for irrotational flows, and the classic Laplace equation, 
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𝜕2𝜑

𝜕𝑥2
−

𝜕2𝜑

𝜕𝑦2
= ∇2φ = 0 

results. This means that the stream functions of all irrotational flows must satisfy the 

Laplace equation and that such flows may be identified in this manner; conversely, 

flows whose does not satisfy the Laplace equation are rotational ones. Since both 

rotational and irrotational flow fields are physically possible, the satisfaction of the 

Laplace equation is no criterion of the physical existence of a flow field. 

 

EXAMPLE 3: A flow field is described by the equation  = y-x2. Sketch the 

streamlines  = 0, =1, and  = 2. Derive an expression for the velocity V at any point 

in the flow field. Calculate the vorticity. 

                        

                                                 Fig. 14.7.3.1 
 

       SOLUTION: From the equation for , the flow field is a family of parabolas 

symmetrical about the y-axis with the streamline 𝜑 = 0 passing through the origin of 

coordinates. 

 

         U =  
𝜕𝜑

𝜕𝑦
 = 

𝜕(𝑦−𝑥2)

𝜕𝑦
 = 1    V = - 

𝜕𝜑

𝜕𝑥
 =- 

𝜕(𝑦−𝑥2)

𝜕𝑥
 = 2x 

         Which allows the directional arrows to be placed on streamlines as shown. 

    The magnitude V of the velocity may be calculated from 
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       v=√𝑢2 + 𝑣2  =√1 + 4𝑥2 

 and the vorticity by Equation (3) 

𝜀 = 
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
=  

𝜕(2𝑥)

𝜕𝑥
−

𝜕(1)

𝜕𝑦
= 2sec−1 ∅  (Counter clockwise) 

Since   0, this flow field is seen to be rotational one. 
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EXAMPLE 4: A stream function in a two-dimensional flow is 𝜑 = 2xy. Show that the flow 

is irrotational (potential) and determine the corresponding velocity potential function. 

 

SOLUTION: The given stream function satisfies the condition of irrotationality, that is, 

 

w = 
1

2
(

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) = 

1

2
(

𝜕2𝜑

𝜕𝑥2 −
𝜕2𝜑

𝜕𝑦2) 

 

   = 
1

2
(

𝜕2(2𝑥𝑦)

𝜕𝑥2 −
𝜕2(2𝑥𝑦)

𝜕𝑦2 )=0 

 

which shows that the flow is irrotational. Therefore, a velocity potential function  will exist 

for this flow. 

By using Equation.  

 

  
𝜕𝜑

𝜕𝑦
 =  

𝜕∅

𝜕𝑥
 =  

𝜕(2𝑥𝑦)

𝜕𝑦
 = 2x 

 

Therefore, 

∅ = ∫ 2𝑥𝜕𝑥 =  𝑥2 + 𝑓1(𝑦)                                                           …..(a) 

 

From Equation  

 

  
𝜕∅

𝜕𝑦
 =  −

𝜕𝜑

𝜕𝑥
 =  −

𝜕(2𝑥𝑦)

𝜕𝑥
 = -2y 

From this equation, 

∅ = ∫ 2𝑦𝜕𝑦 =  𝑦2 + 𝑓2(𝑥)                                                           …..(b) 

 

 

The velocity potential function, 

∅ = 𝑥2 − 𝑦2 + 𝐶 

 

satisfies both functions in Equations a and b. 

 

 

 

14.8 SUMMARY 

(i)  Stoke’s Stream Function Stokes function. 

(ii) Image of source relative to sphere 

(iii) Image of doublet relative to sphere 

1 
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14.9 GLOSSARY 

 

(i). Fluid 

(ii). Two-Dimensional Flow 

(iii). Cylindrical Polar Coordinates  

(iv). Viscous fluid: is a real fluid that flows with some resistance in the opposite 

direction of its flow.         
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14.11 TERMINAL QUESTIONS 

Question 1. Define Property of Stokes function. 

Question 2. What is Stoke’s Stream Function. 

Question 3. A stream function is given by   3x 5  y 3. 

                                       Determine the magnitude of velocity components at the point (3,1). 

 Question 4. What is Green’s Function property in strain. 

 Question 5. Write the difference between Image of source relative to sphere and   

                        Image of doublet relative to sphere. 
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