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1.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of Alphabets Strings and Languages, languages 

and automata and grammar. We also understand String operation, language concatenation 

and Kleene's Star operation. 

1.2 ALPHABETS, STRINGS AND LANGUAGES 

 

1.2.1 LANGUAGES : 

A general definition of language must cover a variety of distinct categories: natural 

languages, programming languages, mathematical languages, etc. The notion of natural 

languages like English, Hindi, etc. is familiar to us. Informally, language can be defined as a 

system suitable for expression of certain ideas, facts, or concepts, which includes a set of 

symbols and rules to manipulate these. The languages we consider for our discussion is an 

abstraction of natural languages. That is, our focus here is on formal languages that need 

precise and formal definitions. Programming languages belong to this category. We start with 

some basic concepts and definitions required in this regard. 

1.2.2 SYMBOLS : 

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are the 

atoms of the world of languages. A symbol is any single object such as , a, 0, 1, #, begin, 

or do. Usually, characters from a typical keyboard are only used as symbols. 

1.2.3 ALPHABETS : 

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is normally 

denoted by . When more than one alphabets are considered for discussion, then subscripts 

may be used (e.g.  etc) or sometimes other symbol like G may also be introduced. 

Example :   

 

1.2.4 STRINGS OR WORDS OVER ALPHABET : 

A string or word over an alphabet  is a finite sequence of concatenated symbols of . 

Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 } . 

aab, abcb, b, cc are  four strings over the alphabet { a, b, c }. 

It is not the case that a string over some alphabet should contain all the symbols from the 

alphabet. For example, the string cc over the alphabet { a, b, c } does not contain the symbols 



a and b. Hence, it is true that a string over an alphabet is also a string over any superset of 

that alphabet. 

  

1.2.5 LENGTH OF A STRING : 

The number of symbols in a string w is called its length, denoted by |w|. 

Example : | 011 | = 4,  |11| = 2,  | b | = 1 

It is convenient to introduce a notation e for the empty string, which contains no symbols at 

all. The length of the empty string e is zero, i.e., | e | = 0. 

 

1.2.6 CONVENTION :   

We will use small case letters towards the beginning of the English alphabet to denote 

symbols of an alphabet and small case letters towards the end to denote strings over an 

alphabet. That is,    (symbols) and    are strings. 

 

1.2.7 SOME STRING OPERATIONS : 

Let  and  be two strings. The concatenation 

of x and y denoted by xy, is the string . That is, the concatenation 

of x and y denoted by xy is the string that has a copy of x followed by a copy of y without 

any intervening space between them. 

Example : Concatenation of the strings 0110 and 11 is 011011 and concatenation of the 

strings good and boy is goodboy. 

Note that for any string w, we = ew = w. It is also obvious that if | x | = n and | y | = m, 

then | x + y | = n + m. 

u is a prefix of v if v = ux for some string x. 

u is a suffix of v if v = xu for some string x. 

u is a substring of v if v = xuy for some strings x and y. 

Example :  Consider the string 011 over the binary alphabet. All the prefixes, suffixes and 

substrings of this string are listed below. 

Prefixes: e, 0, 01, 011. 

Suffixes: e, 1, 11, 011. 

Substrings: e, 0, 1, 01, 11, 011. 

Note that x is a prefix (suffix or substring) to x, for any string x and e is a prefix (suffix or 

substring) to any string. 

A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x  y. 



In the above example, all prefixes except 011 are proper prefixes. 

 

1.2.8 POWERS OF STRINGS :  

For any string x and integer , we use  to denote the string formed by sequentially 

concatenating n copies of x. We can also give an inductive definition of  as follows: 

 = e, if n = 0 ; otherwise  

Example : If x = 011, then  = 011011011,  = 011 and  

 

1.2.9 POWERS OF ALPHABETS : 

We write  (for some integer k) to denote the set of strings of length k with symbols 

from . In other words, 

 = { w | w is a string over  and  | w | = k}. Hence, for any alphabet,  denotes the set 

of all strings of length zero. That is,  = { e }. For the binary alphabet { 0, 1 } we have the 

following. 

 

The set of all strings over an alphabet  is denoted by  . That is, 

 

The set  contains all the strings that can be generated by iteratively concatenating symbols 

from   any number of times. 

 

Example : If  = { a, b }, then  =  { e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}. 

Please note that if , then   that is . It may look odd that one can proceed 

from the empty set to a non-empty set by iterated concatenation. But there is a reason for this 

and we accept this convention. 

The set of all nonempty strings over an alphabet  is denoted by  . That is, 



 
 

Note that is infinite. It contains no infinite strings but strings of arbitrary lengths. 

 

1.2.10 REVERSAL : 

For any string  the reversal of the string is . 

An inductive definition of reversal can be given as follows: 

 

CHECK YOUR PROGRESS  

True/False type questions  

1) A grammar is a mechanism used for describing languages.______________  

2) The Kleene star operation on a language L, denoted as L*.______________________ 

3) The transition from one configuration to the next (as defined by the transition function) is 

called a turn.____________ 

4) The most important feature of the automaton is its control unit._____________  

5) To concatenate to language L1 and L2 is defined as L1+L2_______________  

 

Answers- 

1) True 

2) True 

3) False 

4) True 

5) False 

 

1.3 LANGUAGE : 

 

A language over an alphabet is a set of strings over  that alphabet. Therefore, a language L is 

any subset of . That is,  any  is a language. 

 

Example : 



1. F is the empty language. 

2.  is a language for any . 

3. {e} is a language for any .  Note that, . Because the language F does not 

contain any string but {e} contains one string of length zero. 

4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's. 

5. The set of all strings over {a, b, c} that starts with a. 

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to 

denote languages. 

 

1.3.1 SET OPERATIONS ON LANGUAGES : 

 Since languages are set of strings we can apply set operations to languages. Here are some 

simple examples (though there is nothing new in it). 

Union :  A string    iff   or  

 

Example :  { 0, 11, 01, 011 }  { 1, 01, 110 } = { 0, 11, 01, 011, 111 } 

Intersection :  A string     iff    and . 

 

Example : { 0, 11, 01, 011 }  { 1, 01, 110 } = { 01 } 

Complement : Usually,  is the universe that a complement is taken with respect to. Thus 

for a language L, the complement is  L(bar) = {  |  }. 

Example : Let L = { x | |x| is even }. Then its complement is the language {  | |x| is 

odd }. 

Similarly we can define other usual set operations on languages like relative complement, 

symmetric difference, etc. 

 

1.3.2 REVERSAL OF A LANGUAGE : 

The reversal of a language L, denoted as , is defined as:  . 

Example : 

1. Let L = { 0, 11, 01, 011 }. Then    = { 0, 11, 10, 110 }. 

2. Let L = {  | n is an integer }. Then  =  {  | n is an integer }. 

 



1.3.3 LANGUAGE CONCATENATION :  

The concatenation of languages  and  is defined as 

 = { xy |  and }. 

Example :  { a, ab }{ b, ba } = { ab, aba, abb, abba }. 

Note that ,  

1.       in general. 

 

    

2.     

 

 3.     

 

1.3.4 ITERATED CONCATENATION OF LANGUAGES :  

Since we can concatenate two languages, we also repeat this to concatenate any number of 

languages. Or we can concatenate a language with itself any number of times. The 

operation  denotes the concatenation of L with itself n times. This is defined formally as 

follows: 

 

 

Example :  Let L = { a, ab }. Then according to the definition, we have 

and so on. 

 

1.3.5 KLEENE'S STAR OPERATION :   

 

The Kleene star operation on a language L, denoted as  is defined as follows : 

= ( Union n in N )  

    =  



    = { x | x is the concatenation of zero or more strings from L } 

Thus  is the set of all strings derivable by any number of concatenations of strings in L. It 

is also useful to define 

 = , i.e., all strings derivable by one or more concatenations of strings in L. That is 

 = (Union n in N and n >0)  

 

      =  

  

Example :  Let  L = { a, ab }. Then we have, 

 =  

      = {e}  {a, ab}  {aa, aab, aba, abab} … 

 =  

     = {a, ab}  {aa, aab, aba, abab} … 

Note :  e is in , for every language L, including . 

The previously introduced definition of  is an instance of Kleene star. 

 

 

1.4 AUTOMATA AND GRAMMARS 

 

• The most important feature of the automaton is its control unit, which can be in any 

one of a finite number of interval states at any point. It can change state in some defined 

manner determined by a transition function. 

 



Figure 1: The figure above shows a diagrammatic representation of a generic automation. 

 

Operation of the automation is defined as follows. 

• At any point of time the automaton is in some integral state and is reading a particular 

symbol from the input tape by using the mechanism for reading input. In the next time step 

the automaton then moves to some other integral (or remain in the same state) as defined by 

the transition function. The transition function is based on the current state, input symbol 

read, and the content of the temporary storage. At the same time the content of the storage 

may be changed and the input read may be modifed. The automation may also produce some 

output during this transition. The internal state, input and the content of storage at any point 

defines the configuration of the automaton at that point. The transition from one 

configuration to the next ( as defined by the transition function) is called a move. Finite state 

machine or Finite Automation is the simplest type of abstract machine we consider. Any 

system that is at any point of time in one of a finite number of interval state and moves 

among these states in a defined manner in response to some input, can be modeled by a finite 

automaton. It doesnot have any temporary storage and hence a restricted model of 

computation. 

 

1.4.1 GRAMMAR 

A grammar is a mechanism used for describing languages. This is one of the most simple but 

yet powerful mechanism. There are other notions to do the same, of course. 

In everyday language, like English, we have a set of symbols (alphabet), a set of words 

constructed from these symbols, and a set of rules using which we can group the words to 

construct meaningful sentences. The grammar for English tells us what are the words in it and 

the rules to construct sentences. It also tells us whether a particular sentence is well-formed 

(as per the grammar) or not. But even if one follows the rules of the english grammar it may 

lead to some sentences which are not meaningful at all, because of impreciseness and 

ambiguities involved in the language. In english grammar we use many other higher level 

constructs like noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can 

be defined as 

< sentence > < noun-phrase >< predicate > 

meaning that "a sentence can be constructed using a 'noun-phrase' followed by a predicate". 

 Some more rules are as follows: 

< noun-phrase > < article >< noun > 

< predicate >  < verb > 

with similar kind of interpretation given above. 

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>; 

and eats, runs, swims, walks, are associated with <verb>, then we can construct the sentence- 



a cow runs, the boy eats, an pen walks- using the above rules. Even though all sentences are 

well-formed, the last one is not meaningful. We observe that we start with the higher level 

construct <sentence> and then reduce it to <noun-phrase>, <article>, <noun>, <verb> 

successively, eventually leading to a group of words associated with these constructs. 

These concepts are generalized in formal language leading to formal grammars. The word 

'formal' here refers to the fact that the specified rules for the language are explicitly stated in 

terms of what strings or symbols can occur. There can be no ambiguity in it. 

Formal definitions of a Grammar 

A grammar G is defined as a quadruple. 

 

N is a non-empty finite set of non-terminals or variables, 

 is a non-empty finite set of terminal symbols such that  

, is a special non-terminal (or variable) called the start symbol, 

and is a finite set of production rules. 

The binary relation defined by the set of production rules is denoted by , i.e. 

 iff . 

In other words, P is a finite set of production rules of the form , where 

 and  

 

The production rules specify how the grammar transforms one string to another. Given a 

string  , we say that the production rule  is applicable to this string, since it is 

possible to use the rule  to rewrite the (in ) to  obtaining a new string . 

We say that derives  and is denoted as 

 

Successive strings are dervied by applying the productions rules of the grammar in any 

arbitrary order. A particular rule can be used if it is applicable, and it can be applied as many 

times as described. 

We write  if the string  can be derived from the string  in zero or more 

steps;  if  can be derived from in one or more steps. 

By applying the production rules in arbitrary order, any given grammar can generate many 

strings of terminal symbols starting with the special start symbol, S, of the grammar. The set 

of all such terminal strings is called the language generated (or defined) by the grammar. 



Formaly, for a given grammar  the language generated by G is 

 

That is  iff . 

If , we must have for some , , denoted as 

a derivation sequence of w, The strings  are denoted as sentential 

forms of the derivation. 

Example : Consider the grammar , where N = {S}, ={a, b} and P is the set 

of the following production rules 

{ S ab, S aSb} 

Some terminal strings generated by this grammar together with their derivation is given 

below. 

S ab 

S aSb aabb 

S aSb aaSbb aaabbb 

It is easy to prove that the language generated by this grammar is 

 

By using the first production, it generates the string ab ( for i =1 ). 

To generate any other string, it needs to start with the production S aSb and then the non-

terminal S in the RHS can be replaced either by ab (in which we get the string aabb) or the 

same production S aSb can be used one or more times. Every time it adds an 'a' to the left 

and a 'b' to the right of S, thus giving the sentential form . When the non-terminal 

is replaced by ab (which is then only possibility for generating a terminal string) we get a 

terminal string of the form . 

There is no general rule for finding a grammar for a given language. For many languages we 

can devise grammars and there are many languages for which we cannot find any grammar. 

  

Example: Find a grammar for the language . 

It is possible to find a grammar for L by modifying the previous grammar since we need to 

generate an extra b at the end of the string . We can do this by adding a 

production S Bb where the non-terminal B generates as given in the previous example. 



Using the above concept we devise the follwoing grammar for L. 

 where 

N = { S, B } 

P = { S Bb, B ab, B aBb } 

 

1.5 CHECK YOUR PROGRESS  

Fill in the blanks  

1) An alphabet is a ____________ nonempty set of symbols.  

2) A grammar is a mechanism used for describing _____________.  

3) For any string  the reversal of the string is_______________. . 

4) ________________________ is the simplest type of abstract machine we consider. 

 5) The transition from one configuration to the next ( as defined by the transition function) is 

called a___________________  

 

1.6 ANSWER CHECK YOUR PROGRESS 

1) Finite 

2) Language. 

3)  

4) Finite automation. 

5) Move 

 

1.7 MODEL QUESTION 

Qs-1) What do you understand by Languages and Theory of Computations? What is the most 

important feature of Automation? 

Qs-2) What is move? 

Qs-3) What is Grammar? Give the Formal definitions of a Grammar? How will you find 

grammar for a language? 

Qs-4) What are Symbols? Symbols are indivisible objects or entity that cannot be defined. 

Explain How. 

Qs-5) What is Language? Explain about the natural languages, programming languages, 

mathematical languages? 
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2.1 LEARNING OBJECTIVES 

This chapter gives the basic understanding of Finite Automata, Finite State Automaton, 

Multiple Next State, Formal definition of NFA and the Language of an NFA. We also 

understand States, Transitions and Finite-State Transition System. 

 

2.2 FINITE AUTOMATA 

Automata (singular : automation) are a particularly simple, but useful, model of computation. 

They were initially proposed as a simple model for the behavior of neurons. The concept of a 

finite automaton appears to have arisen in the 1943 paper “A logical calculus of the ideas 

immanent in nervous activity", by Warren McCullock and Walter Pitts. In 1951 Kleene 

introduced regular expressions to describe the behaviour of finite automata. He also proved 

the important theorem saying that regular expressions exactly capture the behaviours of finite 

automata. In 1959, Dana Scott and Michael Rabin introduced non-deterministic automata and 

showed the surprising theorem that they are equivalent to deterministic automata. We will 

study these fundamental results. Since those early years, the study of automata has continued 

to grow, showing that they are indeed a fundamental idea in computing. 

  

2.2.1 STATES, TRANSITIONS AND FINITE-STATE 

TRANSITION SYSTEM : 

Let us first gives some intuitive idea about a state of a system and state transitions before 

describing finite automata. 

Informally, a state of a system is an instantaneous description of that system which gives all 

relevant information necessary to determine how the system can evolve from that point on. 

Transitions are changes of states that can occur spontaneously or in response to inputs to the 

states. Though transitions usually take time, we assume that state transitions are instantaneous 

(which is an abstraction). 

Some examples of state transition systems are: digital systems, vending machines, etc. 

A system containing only a finite number of states and transitions among them is called 

a finite-state transition system. 

Finite-state transition systems can be modeled abstractly by a mathematical model 

called finite automation. 

We said that automata are a model of computation. That means that they are a simplified 

abstraction of `the real thing'. So what gets abstracted away? One thing that disappears is any 

notion of hardware or software. We merely deal with states and transitions between states. 

The distinction between program and machine executing it disappears. One could say that an 

automaton is the machine and the program. This makes automata relatively easy to 

implement in either hardware or software. From the point of view of resource consumption, 



the essence of a finite automaton is that it is a strictly finite model of computation. 

Everything in it is of a fixed, finite size and cannot be modified in the course of the computation. 

 

2.2.2 DETERMINISTIC FINITE (-STATE) AUTOMATA 

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an 

input string -- one symbol at a time -- and then, after the input has been completely read, 

decides whether to accept or reject the input. As the symbols are read from the tape, the 

automaton can change its state, to reflect how it reacts to what it has seen so far. 

Thus, a DFA conceptually consists of 3 parts: 

A tape to hold the input string. The tape is divided into a finite number of cells. Each cell 

holds a symbol from . 

A tape head for reading symbols from the tape 

A control , which itself consists of 3 things: 

finite number of states that the machine is allowed to be in (zero or more states are designated 

as accept or final states), 

a current state, initially set to a start state, 

a state transition function for changing the current state. 

An automaton processes a string on the tape by repeating the following actions until the tape 

head has traversed the entire string: 

The tape head reads the current tape cell and sends the symbol s found there to the control. 

Then the tape head moves to the next cell. 

he control takes s and the current state and consults the state transition function to get the 

next state, which becomes the new current state. 

Once the entire string has been processed, the state in which the automation enters is 

examined. If it is an accept state , the input string is accepted ; otherwise, the string 

is rejected . Summarizing all the above we can formulate the following formal definition: 

 

2.3 DETERMINISTIC FINITE STATE AUTOMATON :  

A Deterministic Finite State Automaton (DFA) is a 5-tuple :  

Q is a finite set of states. 



 is a finite set of input symbols or alphabet. 

 

 is the “next state” transition function (which is total ). Intuitively,  is a 

function that tells which state to move to in response to an input, i.e., if M is in state q and 

sees input a, it moves to state . 

 is the start state. 

 is the set of accept or final states. 

  

2.3.1 ACCEPTANCE OF STRINGS : 

A DFA accepts a string  if there is a sequence of states  in Q such 

that 

1.  is the start state. 

2.  for all  . 

3.  . 

  

2.3.2 LANGUAGE ACCEPTED OR RECOGNIZED BY A DFA : 

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and 

is denoted by  i.e.  

The notion of acceptance can also be made more precise by extending the transition 

function . 

 

2.3.3 EXTENDED TRANSITION FUNCTION : 

Extend  (which is function on symbols) to a function on strings, 

i.e. . 

That is,  is the state the automation reaches when it starts from the state q and finish 

processing the string w. Formally, we can give an inductive definition as follows: 



The language of the DFA M is the set of strings that can take the start state to one of the 

accepting states i.e. 

L(M) = { | M accepts w } 

          = { | } 

  

Example 1 : 

 

 

 is the start state 

 

 

 

It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the 

DFA is any string over { 0, 1} having at least one 1. 

 

We can describe the same DFA by transition table or state transition diagram as following 

TRANSITION TABLE : 

  0 1 

   

  
  

It is easy to comprehend the transition diagram. 



Explanation : We cannot reach find state  w/0 or in the i/p string. There can be any no. of 

0's at the beginning. ( The self-loop at  on label 0 indicates it ). Similarly there can be any 

no. of 0's & 1's in any order at the end of the string. 

 

2.3.4 TRANSITION TABLE : 

It is basically a tabular representation of the transition function that takes two arguments (a 

state and a symbol) and returns a value (the “next state”). 

• Rows correspond to states, 

• Columns correspond to input symbols, 

• Entries correspond to next states 

• The start state is marked with an arrow 

• The accept states are marked with a star (*). 

   0 1 

   

  
  

 

 

2.3.5 (STATE) TRANSITION DIAGRAM : 

A state transition diagram or simply a transition diagram is a directed graph which can be 

constructed as follows: 

1. For each state in Q there is a node. 

2. There is a directed edge from node q to node p labeled a iff . (If there are 

several input symbols that cause a transition, the edge is labeled by the list of these 

symbols.) 

3. There is an arrow with no source into the start state. 

4. Accepting states are indicated by double circle. 

 



5. Here is an informal description how a DFA operates. An input to a DFA can be any 

string  . Put a pointer to the start state q. Read the input string w from left to 

right, one symbol at a time, moving the pointer according to the transition function, 

. If the next symbol of w is a and the pointer is on state p, move the pointer 

to . When the end of the input string w is encountered, the pointer is on some 

state, r. The string is said to be accepted by the DFA if  and rejected if . 

Note that there is no formal mechanism for moving the pointer. 

6. A language  is said to be regular if L = L(M) for some DFA M 

 

2.3.6 REMOVING  TRANSITION 
- transitions do not increase the power of an NFA . That is, any  -NFA ( NFA with 

 transition), we can always construct an equivalent NFA without -transitions. The 

equivalent NFA must keep track where the  NFA goes at every step during computation. 

This can be done by adding extra transitions for removal of every  - transitions from the -

 NFA as follows. 

If we removed the  - transition  from the - NFA , then we need to moves from 

state p to all the state  on input symbol  which are reachable from state q (in the  -

 NFA ) on same input symbol q. This will allow the modified NFA to move from state p to all 

states on some input symbols which were possible in case of -NFA on the same input 

symbol. This process is stated formally in the following theories. 

Theorem if L is accepted by an  - NFA N , then there is some equivalent 

 without  transitions accepting the same language L 

Proof: 

          Let  be the given  with 

We construct  

Where,  for all  and  and 

              

Other elements of N' and N 

We can show that  i.e. N' and N are equivalent. 

We need to prove that  

           i.e. 

            



We will show something more, that is, 

                

 We will show something more, that is,                 

Basis :  , then  

But  by definition of . 

Induction hypothesis Let the statement hold for all  with . 

 

By definition of extension of  

By inductions hypothesis. 

Assuming that 

 

By definition of  

Since  

To complete the proof we consider the case 

When  i.e.  then 

 and by the construction of  wherever  constrains a state 

in F. 

If  (and thus  is not in F ), then  with  leads to an accepting state 

in N' iff it leads to an accepting state in N ( by the construction of N' and N ). 

Also, if (  , thus w is accepted by N' iff w is accepted by N (iff ) 

If  (and, thus in M we load  in F ), thus  is accepted by 

both N' and N . 

Let . If w cannot lead to  in N , then . (Since can add  transitions to get 

an accept state). So there is no harm in making  an accept state in N'. 



Ex: Consider the following NFA with - transition. 

 

        

 

  0 1 
 

 

   

 

 

 

 

 

 

 

 

                                                                                                         Transition table  

 

 
 

 0 1 

 

  

 

  

 

  

 

                                       Transition table ' for the equivalent NFA without - moves 

 

Since   the start state q0 must be final state in the equivalent NFA . 

Since  and  and  we add moves 

 and  in the equivalent NFA . Other moves are also constructed accordingly. 

 -closures: 

The concept used in the above construction can be made more formal by defining the -

closure for a state (or a set of states). The idea of -closure is that, when moving from a 

state p to a state q (or from a set of states Si to a set of states Sj ) an input , we need to 

take account of all -moves that could be made after the transition. Formally, for a given 

state q, 

 -closures:  

Similarly, for a given set  

 -

closures:  



So, in the construction of equivalent NFA N' without -transition from any NFA with 

 moves. the first rule can now be written as  

 

2.3.7 EQUIVALENCE OF NFA AND DFA 
It is worth noting that a DFA is a special type of NFA and hence the class of languages 

accepted by DFA s is a subset of the class of languages accepted by NFA s. Surprisingly, 

these two classes are in fact equal. NFA s appeared to have more power than DFA s because 

of generality enjoyed in terms of -transition and multiple next states. But they are no more 

powerful than DFA s in terms of the languages they accept. 

Converting DFA to NFA 

Theorem: Every DFA has as equivalent NFA 

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is defined 

from  whereas in case of an NFA it is defined from 

 and  be a DFA . We construct an equivalent NFA 

 as follows. 

      i. e 

If  and  

All other elements of N are as in D. 

If  then there is a sequence of states  such 

that  

Then it is clear from the above construction of N that there is a sequence of states 

(in N) such that  and  and 

hence  

Similarly we can show the converse. 

Hence ,  

Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate the 

behaviour of the NFA . For this, the DFA have to keep track of all the states where the NFA 

could be in at every step during processing a given input string. 

There are possible subsets of states for any NFA with n states. Every subset corresponds to 

one of the possibilities that the equivalent DFA must keep track of. Thus, the 

equivalent DFA will have  states. 



The formal constructions of an equivalent DFA for any NFA is given below. We first 

consider an NFA without  transitions and then we incorporate the affects of  transitions 

later. 

Formal construction of an equivalent DFA for a given NFA without  transitions. 

Given an  without - moves, we construct an equivalent DFA 

 as follows 

 i.e.  

 

 

 (i.e. every subset of Q which as an element in F is considered as 

a final state in DFA D ) 

 

for all  and  

where  

That is,  

To show that this construction works we need to show that L(D)=L(N) i.e. 

       

               Or,  

We will prove the following which is a stranger statement thus required. 

                 

Proof : We will show by inductions on  

Basis If =0, then w =  

So,  by definition. 

Inductions hypothesis : Assume inductively that the statement holds of length less 

than or equal to n. 



 

Inductive step 

           Let  , then  with  

Now, 

           

 

Now, given any NFA with -transition, we can first construct an equivalent NFA without 

-transition and then use the above construction process to construct an equivalent DFA , thus, 

proving the equivalence of NFA s and DFA s.. 

It is also possible to construct an equivalent DFA directly from any given NFA with -

transition by integrating the concept of  -closure in the above construction. 

Recall that, for any  

 - closure 

:  

In the equivalent DFA , at every step, we need to modify the transition functions  to keep 

track of all the states where the NFA can go on -transitions. This is done by 

replacing  by -closure , i.e. we now compute at every step as 

follows: 

                   

Besides this the initial state of the DFA D has to be modified to keep track of all the states 

that can be reached from the initial state of NFA on zero or more -transitions. This can be 

done by changing the initial state  to -closure (  ) . 

It is clear that, at every step in the processing of an input string by the DFA D , it enters a 

state that corresponds to the subset of states that the NFA N could be in at that particular 

point. This has been proved in the constructions of an equivalent NFA for any  -NFA 



If the number of states in the NFA is n , then there are states in the DFA . That is, each 

state in the DFA is a subset of state of the NFA . 

But, it is important to note that most of these  states are inaccessible from the start state 

and hence can be removed from the DFA without changing the accepted language. Thus, in 

fact, the number of states in the equivalent DFA would be much less than . 

Example : Consider the NFA given below. 

                                                        

Transition table 

  

 

 0 1 
 

 

 

  

 

{ } 
 

 

 

  

 

 Since there are 3 states in the NFA 

There will be states (representing all possible subset of states) in the equivalent DFA . 

The transition table of the DFA constructed by using the subset constructions process is 

produced here. 

          

 

 

 

 

 

 

 

closures  The start state of the DFA is - 

subsets that contains The final states are all those 

 (since in the NFA). 

Let us compute one entry, 

 0 1 

   

 

 

 

   

{ } 
 

 

   

   

   

   



                        

Similarly, all other transitions can be computed. 

 

Corresponding transition fig. for the DFA is shown as  

 

 

 

 

 

 
 

te that states  are not accessible and hence can be 

removed. This gives us the following simplified DFA with only 3 states. 

                         



 

  

It is interesting to note that we can avoid encountering all those inaccessible or unnecessary 

states in the equivalent DFA by performing the following two steps inductively. 

1. If  is the start state of the NFA, then make - closure ( ) the start state of the 

equivalent DFA . This is definitely the only accessible state. 

If we have already computed a set  of states which are accessible. Then . 

compute  because these set of states will also be accessible. 

Following these steps in the above example, we get the transition table given below 

 0 1 

  

 

   

 

 

Non determinism is an important abstraction in computer science. Importance of non 

determinism is found in the design of algorithms. For examples, there are many problems 

with efficient nondeterministic solutions but no known efficient deterministic solutions. ( 

Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a process is in a 

distributed system is also a good example of nondeterministic situation. Because the 

behaviour of a process might depend on some messages from other processes that might 

arrive at arbitrary times with arbitrary contents. 

It is easy to construct and comprehend an NFA than DFA for a given regular language. The 

concept of NFA can also be used in proving many theorems and results. Hence, it plays an 

important role in this subject. 

In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is 

defined in the same way as the DFA but with the following two exceptions: 

• multiple next state. 

•  - transitions. 



CHECK YOUR PROGRESS  

True/False type questions  

1) Finite-state transition systems can be modeled abstractly by a mathematical model 

called Finite Automation.______________  

 

2) Transitions are changes of states that can occur spontaneously or in response to inputs to 

the states._____________  

 

3) Every DFA has as equivalent NFA___________  

 

4) - transitions  increase the power of an NFA ._____________ 

5) A system containing only a finite number of states and transitions among them is called 

a infinite state transition.____________  

Answers: 

1) True 

2) True 

3) True 

4) False 

5) False 

 

2.4 MULTIPLE NEXT STATE : 

In contrast to a DFA, the next state is not necessarily uniquely determined by the current 

state and input symbol in case of an NFA. (Recall that, in a DFA there is exactly one start 

state and exactly one transition out of every state for each symbol in ). 

This means that - in a state q and with input symbol a - there could be one, more than one or 

zero next state to go, i.e. the value of  is a subset of Q. Thus = 

 which means that any one of  could be the next state. 

The zero next state case is a special one giving = , which means that there is no 

next state on input symbol when the automata is in state q. In such a case, we may think that 

the automata "hangs" and the input will be rejected. 

 



2.4.1 - TRANSITIONS : 

In an transition -, the tape head doesn't do anything- it doesnot read and it doesnot move. 

However, the state of the automata can be changed - that is can go to zero, one or more 

states. This is written formally as implying that the next state could 

by any one of  w/o consuming the next input symbol. 

 

2.4.2 ACCEPTANCE : 

Informally, an NFA is said to accept its input if it is possible to start in some start state and 

process , moving according to the transition rules and making choices along the way 

whenever the next state is not uniquely defined, such that when is completely processed 

(i.e. end of is reached), the automata is in an accept state. There may be several possible 

paths through the automation in response to an input since the start state is not determined 

and there are choices along the way because of multiple next states. Some of these paths may 

lead to accpet states while others may not. The automation is said to accept if at least one 

computation path on input starting from at least one start state leads to an accept state- 

otherwise, the automation rejects input . Alternatively, we can say that, is accepted iff 

there exists a path with label from some start state to some accept state. Since there is no 

mechanism for determining which state to start in or which of the possible next moves to 

take (including the -transitions) in response to an input symbol we can think that the 

automation is having some "guessing" power to chose the correct one in case the input is 

accepted. 

Example 1 : Consider the language L = {  {0, 1}* | The 3rd symbol from the right is 1}. 

The following four-state automation accepts L. 

The m/c is not deterministic since there are two transitions from state  on input 1 and no 

transition (zero transition) from  on both 0 & 1. 

For any string whose 3rd symbol from the right is a 1, there exists a sequence of legal 

transitions leading from the start state q, to the accept state . But for any string  where 

3rd symbol from the right is 0, there is no possible sequence of legal tranisitons leading 

from  and . Hence m/c accepts L. How does it accept any string  L? 

The m/c starts at  and remains in the state  on any input until the 3rd symbol from the 

right is encountered. (Of course, must satisfy | | 3 ). At this point, if the symbol is 1, it 

goes to the state  and these enters &  in the next two steps on any input 0 or 1. But if 



the 3rd symbol from the right is , thus it will get stuck at that point, because of no 

transition defined. 

To enter the state  from , the m/c needs the input 1. If the 1 occur prior to the position 4 

in the input or more from the right (instead of 3rd), thus it can enter  from  on that input 

and finally will enter accept state  but at that point some of the input symbols may be left 

i.e. the input will not be exhausted and hence, the string will not be accepted by the m/c. 

 

2.4.3THE EXTENDED TRANSITION FUNCTION,  : 
To describe acceptance by an NFA formally, it is necessary to extend the transition function, 

denoted as , takes a state  and a string  , and returns the set of states, S Q, 

that the NFA is in after processing the string if it starts in state q. 

Formally,  is defined as follows: 

1.  that is, without rending any input symbol, an NFA doesnot change 

state. 

2. Let some and a . Also assume that 

. Then . 

That is,  can be computed by first computing , and by then following any 

transitive from any of these stats that is labelled a. 

 

2.5 FORMAL DEFINITION OF NFA : 

Formally, an NFA is a quituple  where Q, , , and F bear the same 

meaning as for a DFA, but , the transition function is redefined as follows: 

 

where P(Q) is the power set of Q i.e. . 

  

2.5.1 THE LANGUAGE OF AN NFA : 
From the discussion of the acceptance by an NFA, we can give the formal definition of a 

language accepted by an NFA as follows : 



If  is an NFA, then the langauge accepted by N is writtten as L(N) is 

given by . 

That is, L(N) is the set of all strings w in  such that  contains at least one 

accepting state. 

 

2.6 CHECK YOUR PROGRESS 

Fill in the blanks  

1) A systems can be modeled abstractly by a mathematical model called__________   

2) There are__________ states in the DFA 

3)____________ transitions do not increase the power of an NFA .  

4) ___________ are changes of states that can occur spontaneously or in response to inputs to 

the states.  

5) A ________ to hold the input string. 

 

2.7 ANSWER CHECK YOUR PROGRESS 

1) Finite Automation. 

2)  

3)  

4) Transitions 

5) Tape 

 

2.8 MODEL QUESTION 

Qs-1) What is finite automation? Also explain States, Transitions and Finite-State Transition 

System.  

Qs-2) What is transition? Explain the difference between state transition diagram or simply a 

transition diagram. 

Qs-3) What is Deterministic Finite State Automaton? DFA conceptually consist of how many 

parts? 

Qs-4) What is Transition table?  How can we remove epsilon transition? 

Qs-5) What is the difference between NFA and DFA? How can we convert NFA to DFA? 
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UNIT-III REGULAR EXPRESSIONS (RE) 

 

 

3.1 Learning Objectives 

3.2 Regular Expressions (RE) 

3.3 Regular Expression and Regular Language  

3.4 Regular Grammars 

3.5 Some Decision Algorithms for CFLs 

3.6 Check your progress 

3.7 Answer Check your progress 

3.8 Model Question 

3.9 References 

3.10 Suggested readings 



3.1 LEARNING OBJECTIVES 

This chapter gives the basic understanding of Regular Expressions (RE), 

Regular Expression and Regular Language, Regular Grammars. We also understand Some 

Decision Algorithms for CFLs. 

 

3.2 REGULAR EXPRESSIONS (RE) 

 

RES: Formal Definition 

We construct REs from primitive constituents (basic elements) by repeatedly applying certain 

recursive rules as given below. (In the definition) 

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows. 

Basis : 

i)  is a RE 

ii) is a RE 

iii)  , a is RE. 

These are called primitive regular expression i.e. Primitive Constituents 

REs: Formal Definition 

We construct REs from primitive constituents (basic elements) by repeatedly applying certain 

recursive rules as given below. (In the definition) 

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows. 

Basis : 

 i)  is a RE 

ii) is a RE 

iii)  , a is RE. 

These are called primitive regular expression i.e. Primitive Constituents 

Recursive Step : 

If  and  are REs over, then so are 



i)  

ii)  

iii)  

iv)  

  

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) by a 

finite no of applications of the recursive step (given in 2). 

 

Example : Let = { 0,1,2 }. Then (0+21)*(1+ F ) is a RE, because we can construct this 

expression by applying the above rules as given in the following step. 

Steps RE Constructed Rule Used 

1 1 Rule 1(iii) 

2 
 

Rule 1(i) 

3 1+  Rule 2(i) & Results of Step 1, 2 

4 (1+ ) Rule 2(iv) & Step 3 

5 2 1(iii) 

6 1 1(iii) 

7 21 2(ii), 5, 6 

8 0 1(iii) 

9 0+21 2(i), 7, 8 

10 (0+21) 2(iv), 9 

11 (0+21)* 2(iii), 10 

12 (0+21)* 2(ii), 4, 11 

 

Language described by REs : Each describes a language (or a language is associated with 

every RE). We will see later that REs are used to attribute regular languages. 
 

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can 

define the language L(r) associated with (or described by) a REs as follows. 

1.  is the RE describing the empty language i.e. L( ) =  . 

2. is a RE describing the language { } i.e. L( ) = { } . 

3.  , a is a RE denoting the language {a} i.e . L(a) = {a} . 



4. If  and  are REs denoting language L( ) and L( ) respectively, then 

i)  is a regular expression denoting the language L( ) = L( )  L( ) 

ii)  is a regular expression denoting the language L( )=L( ) L( ) 

iii)  is a regular expression denoting the language  

iv) ( ) is a regular expression denoting the language L(( )) = L( ) 

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is 

L(0*(0+1)) = L(0*) L(0+1) .......................by 4(ii) 

= L(0)*L(0) L(1) 

= { , 0,00,000,........} {0} {1} 

= { , 0,00,000,........} {0,1} 

= {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............} 

 

 Precedence Rule 

Consider the RE ab + c. The language described by the RE can be thought of 

either L(a)L(b+c) or L(ab) L(c) as provided by the rules (of languages described by REs) 

given already. But these two represents two different languages lending to ambiguity. To 

remove this ambiguity we can either 

1) Use fully parenthesized expression- (cumbersome) or 

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other 

algebras mod in mathematics. 

For REs, the order of precedence for the operators is as follows: 

i) The star operator precedes concatenation and concatenation precedes union (+) operator. 

ii) It is also important to note that concatenation & union (+) operators are associative and 

union operation is commutative. 

 

Using these precedence rule, we find that the RE ab+c represents the language L(ab) 

 L(c) i.e. it should be grouped as ((ab)+c). 



We can, of course change the order of precedence by using parentheses. For example, the 

language represented by the RE a(b+c) is L(a)L(b+c). 

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the 

language L(a)(L(b))* L(b) 

Example : The RE (ab)*+b represents the language (L(a)L(b))* L(b). 

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings 

over {0,1} which are either ended with 0 or 11. 

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even 

number of 0's followed by an odd number of 1's i.e.  

 

Note : The notation  is used to represent the RE rr*. Similarly,  represents the RE rr, 

 denotes r, and so on. 

An arbitrary string over  = {0,1} is denoted as (0+1)*. 

Exercise : Give a RE r over {0,1} s.t. L(r)={  has at least one pair of consecutive 

1's} 

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what 

goes before is completely arbitrary. Considering these observations we can write the REs as 

(0+1)*11(0+1)*. 

Example : Considering the above example it becomes clean that the RE 

(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the 

substring 11 or 00. 

Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set 

of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE and any 

no of 0's before, between and after the 1's ensure it. 

Example : Consider the language of strings over {0,1} containing two or more 1's. 

Solution : There must be at least two 1's in the RE somewhere and what comes before, 

between, and after is completely arbitrary. Hence we can write the RE as 

(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each 

ensuring presence of least two 1's somewhere in the string 

i) 0*10*1(0+1)* 

ii) (0+1)*10*10* 

Example : Consider a RE r over {0,1} such that 



L(r) = {  has no pair of consecutive 1's} 

Solution : Though it looks similar to ex ……., it is harder to construct to construct. We 

observer that, whenever a 1 occurs, it must be immediately followed by a 0. This substring 

may be preceded & followed by any no of 0's. So the final RE must be a repetition of strings 

of the form: 00…0100….00 i.e. 0*100*. So it looks like the RE is (0*100*)*. But in this case 

the strings ending in 1 or consisting of all 0's are not accounted for. Taking these observations 

into consideration, the final RE is  r = (0*100*)(1+  )+0*(1+ ). 

Alternative Solution : 

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r = 

(0+10)*(1+ ).This is a shorter expression but represents the same language. 

 

CHECK YOUR PROGRESS  

True/False type questions  

1) The  language that is accepted by some FAs are known as Regular language.___________ 

2) A language L is regular iff it has a regular grammar__________ 

3) Regular grammar and Finite Automata are equivalent________________ 

4) There are no algorithms to test emptiness of a CFL._______________ 

5) If a language is regular, then there is no RE to describe it._____________ 

Answers- 

1) True 

2) True 

3) True 

4) False 

5) False 

 

3.3 REGULAR EXPRESSION AND REGULAR LANGUAGE : 

Equivalence(of res) with fa : 

Recall that, language that is accepted by some FAs are known as Regular language. The two 

concepts : REs and Regular language are essentially same i.e. (for) every regular language 

can be developed by (there is) a RE, and for every RE there is a Regular Langauge. This fact 

is rather suprising, because RE approach to describing language is fundamentally differnet 

from the FA approach. But REs and FA are equivalent in their descriptive power. We can put 

this fact in the focus of the following Theorem. 



Theorem : A language is regular iff some RE describes it. 

This Theorem has two directions, and are stated & proved below as a separate lemma 

  

RE to FA : 

REs denote regular languages : 

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA such 

that L(M) L(r). 

Proof : To prove the lemma, we apply structured index on the expression r. First, we show 

how to construct FA for the basis elements: ,  and for any . Then we show how to 

combine these Finite Automata into Complex Automata that accept the Union, 

Concatenation, Kleen Closure of the languages accepted by the original smaller automata. 

Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are 

represented by transition diagram only. 

Basis : 

Case (i) :  . Then . Then  and the following NFA N recognizes L(r). 

Formally  where Q = {q} and . 

 

 

Case (ii) : .  , and the following NFA N accepts L(r). 

Formally  where . 

 

Since the start state is also the accept step, and there is no any transition defined, it will 

accept the only string  and nothing else. 

Case (iii) : r = a for some . Then L(r) = {a}, and the following NFA N  accepts L(r). 



 

Formally,  where  for  or  

Induction : 

Assume that the start of the theorem is true for REs  and . Hence we can assume that we 

have automata  and  that accepts languages denoted by REs  and , respectively 

i.e.  and . The FAs are represented schematically as shown 

below. 

 

Each has an initial state and a final state. There are four cases to consider. 

 

Case (i) : Consider the RE  denoting the language . We construct 

FA , from  and  to accept the language denoted by RE  as follows : 

 



• Create a new (initial) start state  and give - transition to the initial state of 

 and  .This is the initial state of . 

• Create a final state and give  -transition from the two final state of  and 

. is the only final state of  and final state of  and  will be ordinary states 

in . 

• All the state of  and  are also state of . 

• All the moves of  and  are also moves of . [ Formal Construction] 

• It is easy to prove that  

 

Proof: To show that we must show that 

=  

=  by following transition of . 

 

Starts at initial state  and enters the start state of either  or  follwoing the transition 

i.e. without consuming any input. WLOG, assume that, it enters the start state of . From 

this point onward it has to follow only the transition of  to enter the final state of , 

because this is the only way to enter the final state of M by following the e-transition.(Which 

is the last transition & no input is taken at hte transition). Hence the whole input w is 

considered while traversing from the start state of  to the final state of . Therefore 

 must accept . 

Say,  or . 

WLOG, say  

Therefore when  process the string w , it starts at the initial state and enters the final state 

when w consumed totally, by following its transition. Then  also accepts w, by starting at 



state  and taking  -transition enters the start state of  -follows the moves of  to 

enter the final state of  consuming input w thus takes -transition to . Hence proved. 

 

Case(ii) : Consider the RE  denoting the language . We construct FA 

 from  &  to accept  as follows : 

  

 

Create a new start state and a new final state 

Add - transition from 

 to the start state of  

 to  

final state of  to the start state of  

All the states of  are also the states of  .  has 2 more states than that of 

 namely  and . 

All the moves of  are also included in . 

By the transition of type (b),  can accept . 

By the transition of type (a),  can enters the initial state of  w/o any input and then 

follow all kinds moves of  to enter the final state of  and then following -transition 



can enter . Hence if any  is accepted by  then w is also accepted by . By the 

transition of type (b), strings accepted by  can be repeated by any no of times & thus 

accepted by  . Hence  accepts  and any string accepted by  repeated (i.e. 

concatenated) any no of times. Hence . 

Case(iv) : Let  =( ). Then the FA  is also the FA for ( ), since the use of parentheses 

does not change the language denoted by the expression. 

  

FA to RE (REs for Regular Languages) : 

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some 

DFA M, then there is a RE r such that L = L(r). 

Proof : We need to construct a RE r such that . Since M is a DFA, it 

has a finite no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. 

[ Note : if the n states of M were denoted by some other symbols, we can always rename those 

to indicate as 1, 2, 3,..., n ]. The required RE is constructed inductively. 

Notations :  is a RE denoting the language which is the set of all strings w such that w is 

the label of a path from state i to state j  in M, and that path has no intermediate 

state whose number is greater then k. ( i & j (begining and end pts) are not considered to be 

"intermediate" so i and /or j can be greater than k ) 

We now construct  inductively, for all i, j Q starting at k = 0 and finally reaching k = n. 

Basis : k = 0,  i.e. the paths must not have any intermediate state ( since all states are 

numbered 1 or above). There are only two possible paths meeting the above condition : 

1. A direct transition from state i to state j. 

o  = a if then is a transition from state i to state j on symbol the single 

symbol a. 

o  =  if there are multiple transitions from state i to state j on 

symbols . 

o  = f if there is no transition at all from state i to state j. 

2. All paths consisting of only one node i.e. when i = j. This gives the path of length 0 

(i.e. the RE  denoting the string  ) and all self loops. By simply adding Î to various 

cases above we get the corresponding REs i.e. 

o =  + a if there is a self loop on symbol a in state i . 



o =  +  if there are self loops in state i as multiple 

symbols . 

o  =  if there is no self loop on state i. 

 
Induction : 

Assume that there exists a path from state i to state j such that there is no intermediate 

state whose number is greater than k. The corresponding Re for the label of the path 

is  . 

There are only two possible cases : 

1. The path dose not go through the state k at all i.e. number of all the intermediate states 

are less than 

k. So, the label of the path from state i to state j is tha language described by the 

RE  . 

2. The path goes through the state k at least once. The path may go from i to j and k may 

appear more than once. We can break the into pieces as shown in the figure 7. 

⁰ 

Figure 7 

3. The first part from the state i to the state k which is the first recurence. In this path, all 

intermediate states are less than k and it starts at iand ends at k. So the RE 

 denotes the language of the label of path. 

4. The last part from the last occurence of the state k in the path to state j. In this path 

also, no intermediate state is numbered greater than k. Hence the RE  denoting 

the language of the label of the path. 



5. In the middle, for the first occurence of k to the last occurence of k , represents a loop 

which may be taken zero times, once or any no of times. And all states between two 

consecutive k's are numbered less than k. 

Hence the label of the path of the part is denoted by the RE  .The label of the path 

from state i to state j is the concatenation of these 3 parts which is 

 

 

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by 

the following RE 

 

. 

We can construct  for all i, j {1,2,..., n} in increasing order of k starting with the 

basis k = 0 upto k = n since  depends only on expressions with a small superscript (and 

hence will be available). WLOG, assume that state 1 is the start state and  are 

the m final states where ji  {1, 2, ... , n },  and . According to the 

convention used, the language of the automatacan be denoted by the RE 

 

 

Since  is the set of all strings that starts at start state 1 and finishes at final state 

 following the transition of the FA with any value of the intermediate state (1, 2, ... , n) and 

hence accepted by the automata. 

 

 

3.4 REGULAR GRAMMARS 

A grammar  is right-linear if each production has one of the following 

three forms: 



• A cB , 

• A c, 

• A  

Where A, B   ( with A = B allowed) and . A grammar G is left-linear if each 

production has once of the following three forms. 

A Bc , A c, A  

A right or left-linear grammar is called a regular grammar. 

Regular Grammars and Finite Automata 

Regular grammar and Finite Automata are equivalent as stated in the following theorem. 

Theorem : A language L is regular iff it has a regular grammar. We use the following two 

lemmas to prove the above theorem. 

Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar. 

Proof : Let  be a DFA that accepts L. 

Let  and . 

We construct the right-linear grammar  by letting 

N = Q ,  and  

[ Note: If , then ] 

Let . For M to accept w, there must be a sequence of states 

 such that 

 

and     

By construction, the grammar G will have one production for each of the above transitions. 

Therefore, we have the corresponding derivation. 



 

Hence w L(g). 

Conversely, if  , then the derivation of w in G must have the form as 

given above. But, then the construction of G from M implies that 

, where , completing the proof. 

Lemma 2 : Let  be a right-linear grammar. Then L(G) is a regular 

language. 

Proof: To prove it, we construct a FA M from G to accept the same language. 

is constructed as follows: 

 ( is a special sumbol not in N ) 

,  

For any  and and  is defined as 

 if  

and , if . 

We now show that this construction works. 

Let . Then there is a derivation of w in G of the form 

 

  

By contradiction of M, there must be a sequence of transitions 

 



implying that  i.e. w is accepted by M. 

Conversely, if  is accepted by M, then because  is the only accepting state 

of M, the transitions causing w to be accepted by M will be of the form given above. These 

transitions corresponds to a derivationof w in the grammar G. Hence , completing 

the proof of the lemma. 

Given any left-linear grammar G with production of the form , we can construct 

from it a right-linear grammar  by replacing every production of G of the form 

 with  

It is easy to prove that . Since  is right-linear,  is regular. But then 

so are  i.e.  because regular languages are closed under reversal. 

Putting the two lemmas and the discussions in the above paragraph together we get the proof 

of the theorem- 

A language L is regular iff it has a regular grammar. 

Example: Consider the regular expression 101*. The DFA for 101* is shown below. 

The right linear grammar generating the language denoted by 101* i.e accepted by the above 

DFA is produced below follwoing the construction process given in the lemma 1. 

 

 

 

Since, C is useless we can eliminate all productins involving C to produce a simpler grammar 

for 101* 

 

 Example : Consider the grammar 

 



It is easy to see that G generates the language denoted by the regular expression (01)*0. 

The construction of lemma 2 for this grammar produces the follwoing FA. 

This FA accepts exactly (01)*1. 

 

3.5 SOMEDECISION ALGORITHMS FOR CFLS 

n this section, we examine some questions about CFLs we can answer. A CFL may be 

represented using a CFG or PDA. But an algorithm that uses one representation can be made 

to work for the others, since we can construct one from the other. 

Testing Emptiness : 

Theorem : There are algorithms to test emptiness of a CFL. 

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the 

construction described in the context of elimination of useless symbols, whether the start 

symbol is useless. If so, then ; otherwise not. 

  

Testing Membership : 

Given a CFL L and a string x, the membership, problem is to determine whether ? 

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the 

PDA can grow its stack indefinitely on  input, and the process may never terminate, even if 

the PDA is deterministic. 

So, we assume that a CFG  is given such that L = L(G). 

Let us first present a simple but inefficient algorithm. 

Convert G to  in CNF generating . If the input string , 

then we need to determine whether  and it can easily be done using the technique 

given in the context of elimination of -production. If ,  then  iff . 

Consider a derivation under a grammar in CNF. At every step, a production in CNF in used, 

and hence it adds exactly one terminal symbol to the sentential form. Hence, if the length of 

the input string x is n, then it takes exactly n steps to derive x ( provided x is in ). 

Let the maximum number of productions for any nonterminal in  is K. So at every step in 

derivation, there are atmost k choices. We may try out all these choices, systematically., to 



derive the string x in . Since there are atmost  i.e. choices. This algorithms is of 

exponential time complexity. We now present an efficient (polynomial time) membership 

algorithm. 

CYK Algorithm to decide membership in CFL 

We now present a cubic-time algorithm due to cocke, Younger and Kasami. It uses the 

dynamic programming technique-solves smaller sub-problems first and then builds up 

solution by combining smaller sub-solutions. It determines for each substring y of the given 

string x the set of all nonterminals that generate y. This is done inductively on the length of y. 

Let  be the given CFG in CNF. Consider the given string x and let 

. Let  be the substring of x that begins at position i ( i.e. i-th symbol of x ) and has length j. 

Let be the set of all nonterminals A such that . 

We write  . Where each  is a terminal symbol. 

 iff . Thus we construct the sets for all . 

Combining substrings of length 2, it is clear that,  i.e.  iff there is a 

production  in G and  and . 

That is  iff  and  and  

Thus we can construct the sets  from the already constructed sets , by inspecting the 

grammar. 

In general considering substrings  of length j,  i.e.  iff there is a 

production  in G such that  and  for some . 

That is  iff and  for some  such that . The 

idea is to divide,  into smaller substrings, using all possible wyas (i.e. for different values 

of k), and construct  from already 

Combining substrings of length 2, it is clear that,  i.e.  iff there is a 

production  in G and  and . 



That is  iff  and  and  

Thus we can construct the sets  from the already constructed sets , by inspecting the 

grammar. 

In general considering substrings  of length j,  i.e.  iff there is a 

production  in G such that  and  for some . 

That is  iff and  for some  such that . The 

idea is to divide,  into smaller substrings, using all possible wyas (i.e. for different values 

of k), and construct  from already 

Limitations of Finite Automata and Non regular Languages : 

The class of languages recognized by FA s is strictly the regular set. There are certain 

languages which are non regular i.e. cannot be recognized by any FA 

Consider the language  

In order to accept is language, we find that, an automaton seems to need to remember when 

passing the center point between a's and b's how many a's it has seen so far. Because it would 

have to compare that with the number of b's to either accept (when the two numbers are 

same) or reject (when they are not same) the input string. 

But the number of a's is not limited and may be much larger than the number of states since 

the string may be arbitrarily long. So, the amount of information the automaton need to 

remember is unbounded. 

A finite automaton cannot remember this with only finite memory (i.e. finite number of 

states). The fact that FA s have finite memory imposes some limitations on the structure of 

the languages recognized. Inductively, we can say that a language is regular only if in 

processing any string in this language, the information that has to be remembered at any point 

is strictly limited. The argument given above to show that  is non regular is informal. 

We now present a formal method for showing that certain languages such as  are non 

regular. 

 

The Pumping Lemma 

We can prove that a certain language is non regular by using a theorem called “Pumping 

Lemma”. According to this theorem every regular language must have a special property. If a 

language does not have this property, than it is guaranteed to be not regular. The idea behind 

this theorem is that whenever a FA process a long string (longer than the number of states) 



and accepts, there must be at least one state that is repeated, and the copy of the sub string of 

the input string between the two occurrences of that repeated state can be repeated any 

number of times with the resulting string remaining in the language. 

Pumping Lemma : 

Let L be a regular language. Then the following property olds for L. 

There exists a number  (called, the pumping length), where, if w is any string in L of 

length at least k i.e.  , then w may be divided into three sub strings w = xyz, satisfying 

the following conditions: 

 i.e.  

 

 

Proof : Since L is regular, there exists a DFA  that recognizes it, i.e. L = 

L(M) . Let the number of states in M is n. 

Say,  

Consider a string  such that (we consider the language L to be infinite and hence 

such a string can always be found). If no string of such length is found to be in L , then the 

lemma becomes vacuously true. 

Since  . Say  while processing the string w , the DFA 

M goes through a sequence of states of states. Assume the sequence to be 

 

Since , the number of states in the above sequence must be greater than n + 1. But 

number of states in M is only n. hence, by pigeonhole principle at least one state must be 

repeated. 

Let qi and ql be the ql same state and is the first state to repeat in the sequence (there may be 

some more, that come later in the sequence). The sequence, now, looks like 

 

which indicates that there must be sub strings x, y, z of w such that 



 

This situation is depicted in the figure 

Since  is the first repeated state, we have,  and at the same time y cannot be 

empty i.e . From the above, it immediately follows that  . 

Hence  . Similarly, 

 implying  

 implying  

and so on. 

That is, starting at the loop on state can be omitted, taken once, twice, or many more times, 

(by the DFA M ) eventually arriving at the final state 

Thus, accepting the string xz, xyz, xy2z,... i.e. xyiz for all  

Hence . 

We can use the pumping lemma to show that some languages are non regular. 

Please note, carefully, hat the theorem guarantees the existence of a number  as well as 

the decomposition of the string w to xyz. But it is not known what they are. So, if the theorem 

is violated for particular values of 

 

3.6 CHECK YOUR PROGRESS 

Fill in the blanks: 

1) A language that is accepted by some FAs are known as_______________  

2) Given any CFL L, there is a _______ G to generate it. 

3) Regular grammar and ______________ are equivalent. 

4) There are algorithms to test _______________ of a CFL. 

5) If L is a regular language, then L is generated by some__________________ 



 

 

3.7 ANSWER CHECK YOUR PROGRESS 

1) Regular language. 

2) CFG 

3) Finite Automata 

4) Emptiness 

5) Right-linear grammar. 

 

3.8 MODEL QUESTION 

Qs-1) What is Regular Expression explain with the help of example? 

Qs-2) Why Regular expression and Finite automata are equivalent explain with the help of 

example? 

Qs-3) What is CFL? How emptiness of a CFL is tested? 

Qs-4) What is precedence rule? Explain. 

Qs-5) What is Context Free Grammar(CFG)? For Context Free Grammar(CFG) which 

grammar is used? 
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4.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of DFA Isomorphisms, The minimal DFA, A 

Minimization Algorithm, Some decision properties of Regular Languages, Finite Automata 

with output, Moore machines, Mealy machines. We also understand Equivalence of Moore 

and Mealy machines. 

 

 

4.2 MINIMIZATION OF DETERMINISTIC FINITE 

AUTOMATA (DFA) 

For any regular language L it may be possible to design different DFAs to accept L. Given 

two DFAs accepting the same language L, it is now natural to ask - which one is more 

simple? In this case, obviously, the one with less number of states would be simpler than the 

other. So, given a DFA accepting a language, we might wonder whether the DFA could 

further be simplified i.e. can we reduce the number of states accepting the same language ? 

Consider the follwoing DFA , 

 

 

 

A minute observation will reveal that it accepts the language of the regular expression 

 

The same language is accepted by the following simpler DFA  as well. 

 



Figure 2 

It is a fact that, for any regular language L there is a unique minimal state DFA ( the 

uniqueness is up to isomorphism to be defined next ). 

 For any given DFA M accepting L we can construct the minimal state DFA accepting L by 

using an algorithm which uses following generic steps. 

• First, remove all the states ( of the given DFA M ) which are not accessible from the 

start state i.e. sates P for which there is no string  s.t. . Removing 

these states, clearly, will not change the language accepted by the DFA. 

• Second, remove all the trap states, i.e. all states P from which there is no transition out 

of it. 

• Finally, merge all states which are "equivalent" or "indistinguishable". We need to 

define formally what is meant by equivalent or indistinguishable states; but at this 

point we assume that merging these states would not change the accepted language. 

Inaccessible states can easily be found out by using a simple research e.g. depth first search. 

removing trap states are also simple. In the example, states 5 and 6 are inaccessible and hence 

can be removed, states 1 and 2 are equivalent and can be merged. Similarly states 3 & 4 are 

also equivalent and can be merged together to have the minimal DFA  as produced above. 

To construct the minimal DFA we need to see how to find out indistinguishable or equivalent 

states for merging. 

we start with a definition and then proceed to find method to construct minimal state DFAs. 

 

4.3 DFA ISOMORPHISMS : 

Two DFAs are said to be isomorphism if they are identical upto renaming of the states. 

Formally, DFA isomorphisms are defined as follows. 

Definiton : Two DFAs  and  are isomorphic if 

there is a bijection  s.t. the follwoing hold. 

1.  

2. ,  iff  

3. ,  

o  

Theorem : For any regular language L there is a unique (upto isomorphism as defined ) 

DFA that has a minimum number of states. In fact, the minimum DFA is the same as the one 

that has as states the equivalence classes of  (as defined in the context of Myhill-Nerode 

Theorem). 



Proof : Let  be the DFA which states are equivalence classes of . 

Let  be any other DFA recognizing L. we have already shown that 

1.  is a right invariant equivalence relation of finite index s.t. L is the union of some 

of its equivalence classes. 

2.  is a refinement of . 

3. This implies, the number of equivalence classes of  (which is equal to the number 

of states in M) must be greater than or equal to the number of equivalence classes 

of  ( which is equal to the number of states in , by construction ). 

4. That is  

5. If , then we are done, i.e.  is the minimum state DFA for L. 

6. If  , then to prove the theorem we need to show that DFAs  and M are 

isomorphism. 

  

4.3.1 SHOWING THAT  AND M ARE ISOMORPHIC 

To show that  and M are isomorphic we have to define a bijection  that 

satisfies all the three conditions given in the definition of DFA isomorphism. 

1. Recall that the states of  are  where  are the 

representatives of each k equivalence classes of . 

2. Let us define  as follows 

 

3. That is, f maps state  of  to the state in M which can be arrived at processing 

the string  from the start state of M. we know that   . 

Hence f is well-defined. 

4. f is onto since  

5. To show that f is one-to-one, we need to show that  if , 

then p = q . That means, we need to show that  if , 

then . (since  are the representative of different equivalence classes 

of , this proves that f is one-to-one ). 

Let = . 



Then  

Therefore  for any . 

Hence, by definition of , 

 iff  or . 

This shows that f is a bijection. 

we now show in the following that it satisfies all the three conditions. 

1. Note that, since f is a bijection, . Also note that . 

Hence, . Therefore, the initial state  of  is 

mapped to the initial state  of M thus satisfying the first condition. 

2. We know that for any  

3.  

 ( by definition) 
4.  

 (Since M accepts L) 
5.  

 ( by definition of f ) 
6.  

Thus final state of  are mapped to final stat of M , satisfying the second condition. 

7. Observe that, for any ,  

 

This satisfies the third condition of the definition, thus proving that  and M are isomorphic. 

This also completes the prove that  is the minimal state DFA for L since, now, , ( 
i.e. the number of state Q in any arbitrary DFA M accepting the language L must be greater than 

or equal to the number of states  of the DFA  that has as states the equivalence classes 

of . ) 

 

 



4.4 THE MINIMAL DFA 

Given DFA M accepting a regular language L, we observe that 

1.  is the minimal state DFA accepting L. 

2.  refines , implying 

Each equivalence classes of  is the union of some equivalence classes of . 

3. Hence, each staet of  ( which correspond to the equivalence class of ) can be 

obtained by merging states of M. ( which correspond to equivalence classes of ) 

  

But, how do we decide in general when two states can be merged without changing the language 
accepted? 

 we now going to devise an algorithm for doing this until no more merging is possible. we start 
with the following observations. 

• It is not possible to merge an accept state p and a non-accepting state q. Because 

if  and  for some , then x must be accepted 
and y must be rejected after merging p and q. But, now, the resulting merged state can 
neither be considered as an accept state nor as a non-accepting one. 

• If p and q are merged, then we need to merge  and , for every , as 
well, to maintain determinism. 

From the above two observations we conclude that states p and q cannot be merged 

if  and  for some . 

Using the concept in the previous page, we now define an indistinguishability relation as follows: 

Definition : States p and q are indistinguishable if   iff , and is 

denoted as . It is easy to see that indistingushability is an equivalence relation. 

In other words we say that sattes p and q are "distinguishable" if  s.t 

 and  and is denoted as . 

we say that, states p and q of a DFA M accepting a language L can be merged safely (i.e. 

without changing the accepted language L) if  i.e. if p and q are indistinguishable. we can 
prove this by showing that when p and q are merged. Then they correspond to the same state 

in . 

Formally,  iff ,  and x  y. 



Proof : (only if) Let ,  and  for some . Now, for 

any  we have 

 

 iff  (since, ) 

So,  iff  x  y. 

(if) Let ,  and . 

Hence,  s.t. 

 and  ( ) 

Hence  and . 

This implies,  and  

so, . 

 

4.5 A MINIMIZATION ALGORITHM : 

We now produce an algorithm to construct the minimal state DFA from any given DFA 
accepting L by merging states inductively. 

The algorithm assume that all states are reachable from the start state i.e. there is no 
inaccessible states. The algorithm keeps on marking pairs of states ( p, q ) as soon as it 

determines that p and q are distinguishable i.e. . The pairs are, of course, unordered i.e. 
pairs ( p, q ) and ( q , p) are considered to be identical. The steps of the algorithm are given 
below. 

1. For every p, q Q , initially unmark all pairs ( p, q ). 

2. If  and (or vice versa ) then mark ( p, q ). 

3. Repeat the following step until no more changes occur : If there exists an unmarked 

pair ( p, q ) such that  is marked for some , then mark ( p, q ). 

4. iff ( p, q ) is unmarked. 

The algorithm correctly computes all pairs of states that can be distingusihed i.e. unmarked. 



 
It is easy to show (by induction ) that the pair ( p, q ) is mraked by the above algorithm 

iff  s.t.  and (or vice versa ) i.e. if . 

 

Example : Let us minimize the DFA given below 

 
Figure 3 

we execute the algorithm and mark a pair by putting an X on the table as shown in figure 4. ( 

Note that the table is a diagonal one having  entries for a DFA having n states. ) 

  

 
Figure 4 

Initially, all cells are unmarked. (i.e. at step 1 of the algorithm) . After step 2, all cells representing 
pairs of states of which one is accepting and the other is non-accepting are marked by putting an 
X. The table above shows the status after this step. 

In step 3, we consider all unmarked pairs one by one. Considering the unmarked pair , 

we find that  &  go to  and , respectively, on input 0. we use the 

notation  to indicate this. SInce the pair is not marked, 

 cannot be marked at this point. Again, we see that,  and  is 



unmarked. Hence, we cannot mark  and since we have considered all input symbols (0 & 
1) we need to examine other unmarked pairs. The observations and actions are shown below. 

•  

• , cannot mark  since  & are unmarked . 

•  

• , cannot mark  since  is unmarked . 

• ,  is marked since  is already marked. 

• ,  is marked since  is already marked. 

• ,  is never marked since it is not in the table & 

hence  is not marked. 

•  
• The resulting table after this pass is given below. 

 
Figure 5 

• In the next pass we find that  and  is marked in the 

previous pass .Hence,  can be marked now. 

• Similarly,  and hence  can be marked since  has 
been marked in the previous pass. Other pairs cannot be marked and the resulting table 
is shown below. By executing step 3 again we observe that no more pairs can be marked 
and hence the algorithm stops with this table as the final result. 

• The unmarked pairs left in the table after execution of the algorithm are 

 and  implying  and . Now, we merge  &  and  &  to 

have new states  & , respectively. 
• Transitions are adjusted appropriately to obtain the following minimal DFA. 



 
Figure 6 

•  is a final state, since both  &  were final states. Similarly is a non-final state. 

 

 goes to  on input 0 and 1, since  go to  and  respectively on 0 and 1.Similar, 
justifications suffice for other adjusted transitions. 

  

CHECK YOUR PROGRESS  

True/False type questions  

1)For any regular language L it may be possible to design different DFAs to 

accept L.__________ 

2) For any regular language L there is a unique (upto isomorphism as defined ) DFA ._________ 

3) Moore and Mealy machines both produces output____________ 

4) A Mealy machine is a four-tuple___________ 

5) Two DFAs are said to be isomorphism if they are not identical upto renaming of the 
states.________ 

 

Answers- 

1) True 

2) True 

3) True 

4) False 

5) False 

 



4.6 SOME DECISION PROPERTIES OF REGULAR 

LANGUAGES 

At this point we would like to find out answers to some important questions related to regular 
languages. The questions we consider here all have answers which may be either “yes” or “no”. 
These are known as decision problems since we used to decide whether the answer is “yes” or 
“no”. [The reason for considering decision problems is that a regular language is recognized by a 
FA, which, in response to an input string, either ‘accepts' or ‘rejects' the input string and can be 
considered as producing “yes” or no “answers”, respectively.] 

Consider the following typical and important question: 

w and a regular language L , is an element of L ? 

The answer is either yes or no. 

While w is represent explicitly, we wonder how L given to us. Obviously, L cannot be given as an 

enumeration of strings (L may be infinite). L will be represented either by a DFA , NFA or regular 

expression. 

The question presented above is called the “membership problem” for the corresponding regular 

language L. 

If L is represented by a DFA , the problem has an easy solution- 

• Simulate the DFA on input w 
• If the DFA ends in an accepting state, the answer is “yes”. Otherwise, the answer is “no”. 

The algorithm is very efficient and it can easily be verified that it takes linear time on the length of 
the input w 

If L is given as an NFA , we can first convert it to an equivalent DFA and than use the above 
algorithm to find the answer. This is not efficient, since the conversion algorithm 
from NFA to DFA (by using subset constructions) is expensive. 

Similarly, if L is expressed by using a regular expression, we can first convert it to an NFA and 
than use the above algorithm. We see that this is also an expensive method. 

We will consider some more decision problems related to regular languages as given below. 

• Given a FA M , is L(M) empty? 

• Given a FAM, is L(M) infinite? 

• Given two FA s M1 and M2 , do they accept the same language? That is, 
whether L(M1)=L(M2)? 

The list is not extensive. We will consider decision algorithm for the above mentioned problem 
only. 

It is interesting to note that we can use the pumping lemma to determine whether the language 
accepted by a DFA is empty or infinite. The following theorem states this result. 

Theorem : If M is a DFA with n states, than the language accepted by M (i.e. L(M)) is 



1. non empty if, and only if, M accepts some string w with  

2. infinite if, and only if, M accepts some string w such that  

Proof: 

3. If M accepts a string w with , then L(M) is clearly non empty. Conversely, 
let L(M) be non empty, and let w be the shortest string accepted by M. Then it must be 

the case that . Otherwise, according to the pumping lemma w can be 
decomposed as w=xyz satisfying all the three constraints of the pumping lemma. So, 

 For the case i=0, the string  is a string which is shorter 

than w (since ) 

This contradicts that w is the shortest string accepted by M. Hence, . 

• Let M accept a string w with . Then by pumping lemma w can be 
decomposed as w=xyz satisfying all the three constraints of the pumping lemma. Hence 

 

Therefore, L(M) must be infinite. 

Conversely, let L(M) be infinite, and let w be the shortest string accepted by M whose length 

is at least n i.e. w . (Note that such a string must exist, since L(M) is infinite and there 

are only a finite number of strings of length less than n). Then, it must be the case 

that, . Otherwise (i.e. if , by the pumping lemma we can 

decompose w as w=xyz satisfying all the constrains of the pumping lemma. So, 

. For i=0, in particular, is a shorter string 

than w (since ), leading to a contradiction. Hence, . 

This theorem gives us the following naive algorithm to determine the emptiness and 

finiteness of a language L(M) accepted by a DFA M . 

Algorithm to decide emptiness 

• Run M on all strings of length less than n , where n is the number of states. 

• If M accepts any of these, than L(M) is nonempty. Otherwise, L(M) is 

empty. (From part (1) of the theorem). 

But the algorithm is highly inefficient, since the DFA M may have to check all the strings of 

length less than n and there are  strings of such length. 



Algorithm to decide finiteness of L(M) . 

• Run M on all strings of length between n and 2n 

If M accepts any string of these, then L(M) is infinite. Otherwise, L(M) is 

finite.(From part (2) of the theorem) 

Once again, we observe that the algorithm is highly inefficient (i.e. experimental) 

But, efficient algorithms exists to decide these problem. We know that a DFA can be 

represented by a directed graph and for a DFA to accept a string there must exist a path from 

the start state to any final state. Using this fact, we have the following efficient algorithm to 

decide emptiness. (Assume, DFA M is given as a directed graph) 

• Do DFA from the start state q0 

• If any of the final state is reachable from the start state q0 , than L(M) is 

nonempty. Otherwise, L(M) is empty 

We now consider an efficient algorithm to determine whether L(M) is infinite. 

We know that all the states which are not reachable from q0 can be detected (along with the 

associated transition) without changing the accepted language. 

Similarly, the accepted language does not change if all the states that cannot lead to an 

accepting state (also called ‘trap' states) are detected. 

 

Claim1 : If L(M) is infinite, then there must exist a cycle in the directed graph. 

Proof : Since L(M) is infinite, according to the previous theorem, there exists a 

string  with where n is the number of states in the DFA M . Since the 

length of the accepted string w is greater than the number of states, there must exist a 

repeated state in the path from q0 to the final state while processing the string w. His 

repetition of (at least one) state in the path implies the existence of a cycle. 

Claim 2: If there is a cycle in the directed graph (for the DFA M ), then L(M) must be 

infinite. 

Proof : We know that all states are reachable from the start state q0. Also, there can not be 

any cycle involving “useless” states, because these have already been removed. 

Hence if there exists a cycle, there must be a path from the start state q0 to one of the states 

involved in the cycle and, also, there must be a path from on e of the states involved in the 

cycle to an accepting state. The situation is depicted in the following figure. 

       



                 

So, clearly, starting at , than following the cycle infinitely many times, the DFA can accept 

infinitely many strings. 

Hence, L(M) is infinite. 

It is a well-known fact that there exists efficient algorithm to detect a cycle in directed graph. 

From the above, we have the following efficient algorithm to decide infiniteness of L(M). 

• Delete all states not reachable from the start state and delete all states that 

cannot lead to an accept state ( DFS can be used for this). 

• If there is a cycle, then L(M) is infinite. Otherwise, L(M) is finite. 

It is observed that using the decision algorithm for emptiness and finiteness together with 

closure properties we can find more decision algorithms. Here is an example. 

Example : Given DFA s M1 and M2. Is L(M1) = L(M2)? 

Solution : Observe that  and  

Thus L(M1) = L(M2), iff  and  This implies that 

L(M1) = L(M2) iff  

Since regular languages are closed under union, intersection and complement, we can 

construct a DFA M3 recognizing the language  

If M3 accepts any string (i.e. ) then ) .Otherwise , L(M1) = 

L(M2) 

We can use emptiness algorithm to decide if ) 

 

4.7 FINITE AUTOMATA WITH OUTPUT 

The definition of FA that we have already considered allows only two possible outputs is 

response to an input string, accept or reject. The definition can be extended so that the output 

can be chosen from some alphabet. Considering two different approaches to associate the 

output we have two different types of machines in the category- Moore machines and Mealy 

machines (They are named after the inventors). In a Moore machine the output is associated 



with the state, whereas in a Mealy machine the output is associated with the transition. Even 

though the two models look different, we can prove that they are equivalent. 

4.7.1 MOORE MACHINES : 

A Moore machine is a six-tuple 

              where  and q0 are as in DFA .  is the output alphabet 

and  , is a mapping which gives the output associated with each state. Note that 

there is no final state and the input and output alphabet need not to be same. 

et the sequence of states the machine goes through in response to the input 

sequence  is . Then the output produced by the machine in 

response to this input  is defined as  .Note that a Moore 

machine produces an output without taking any input on state q0. That is, is the output 

in response to input . Hence, the length of the output string is always one more than that of 

the input string.   

Example 1: Suppose we wish to determine exactly low many times the sub string  occurs 

in the input string. The Moore machine presented by the given transition diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Keeps count of this number. 

Note that, a state p here is annotated with  if it the output symbol  is 

associated with the state p i.e. if . 

Every state outputs 0 except the state q3 which outputs  1 start state q0, following any 

path, we arrive at state q3 the last three input symbols read must be . As soon as we 

arrive at q3, it outputs 1(prior to that it outputs all 0s) indicating that it has read the sub 

string  in the input. From q3 we can arrive at q1 on input b and then again arrive 

at q3(following some path) provided the last three input symbols read are . Thus, 



the machine outputs 1 as soon as it read the sub string ; otherwise, it outputs 0s. So, 

the number of sub string in the input is given by the number of 1s in the output string at 

the point when the machine finishes processing the input string. 

For example, on input  the machine will go through the 

states producing the output sequence 000000010000010 

indicating that the sub string  occurs twice in the input string as the number of 1s in the 

output string is 2. 

he Moore machine can also be represented by a table, where the table to represent the 

transition remains same as in FA , but there is a separate column (separated by a double 

line) to represent the output associated with each state. The tabular form of the Moore 

machine of the above example is given below. 

 
 

b  

q0 q0 q1 0 

q1 q2 q1 0 

q2 q3 q1 0 

q3 q0 q1 1 

A Moore machine does not define a language of accepted strings, because in response to any 

input string it produces an output string and there is no concept of final states. The processing 

of the input string terminates when it outputs the symbol corresponding to the last input 

symbol. 

For a given FA M , accepting the language L(M), if we associate 0 to any nonaccepting state 

and 1 to each accept state, then the 1's in any output sequence (produced in response to some 

input sequence) mark the ending of all sub strings of the input starting from the first symbol 

that are in L(M). 

rom this, we can consider FA to be a special case of a Moore machine where the output 

alphabet  and a state p is ‘accepting' if and only if . 

So, a Moore machine can be said to recognize the language of all input strings whose outputs 

ends in a 1. In the example Moore machine given above if we make q3 as final state and 

remove all outputs associated with the states, it will be a DFA accepting all string over 

 that ends with . 

4.7.2 MEALY MACHINES : 

A Mealy machine is a six-tuple,  , where all elements are as in Moore 

machine, except for  which is defined as 

                         



This means that  gives the output associated with the transition from state q on 

input . 

Let the sequence of states the machine goes through in response to the input 

string  is  . 

Then the output produced by the machine in response to this input  is defined 

by  . The length of the output sequence unlike for the Moore 

machine. 

Example:2 Consider the Mealy machine given below. 

The machine outputs 1 in the output string in response to some input string to indicate two 

consecutive occurrences of in the input. 

For example, the out put corresponding to the input is 00001100100. 

 

 

We can express the Mealy machine in tabular form as indicated below. 

The entry b/0 for the raw q1 & column q2indicates that there is a transition from state q1 to 

state q2 on input b and the output associated with this transition is 0. For no transition defined 

from state p to state q the entry for raw p & column q will be  

 q0 q1 q2 

q0 
 

/0 b/0 

q1 
 

/1 b/0 

q2 
 

/0 b/0 
 

 

 

 



4.8 EQUIVALENCE OF MOORE AND MEALY MACHINES 

Since Moore and Mealy machines both produces output (instead of normal convention of 

accepting a language by a FA ). We can compare them in the sense that they are equivalent if 

they always produce the same output string in response to the same input string. But there can 

never be an exact match between the output strings produced by them since the length of the 

output string of a Moore machine is always one more than that of a Mealy machine in 

response to the same input string. However, if we ignore the response of a Moore machine for 

its initial state (i.e. response to input  ), then we can define the equivalence of a Moore 

machine,  and a Mealy machine  by saying that if for all input 

string  , where  is the output of  for its initial state 

and  are outputs of  and  on w respectively. Then they are equivalent 

he following two theorems prove the equivalence of Moore and Mealy machines in this 

sense. 

Theorem : If  is a Moore machine, then there is a Mealy machine 

 and  . 

Proof : 

We construct a Mealy machine 

 from the given Moore machine  , where all the elements 

except  are as in .  is defined as 

              

That is, the output associated with state q in the Moore machine will be associated with the 

transitions going to the state q (from other state) on the same input symbol  in the Mealy 

machine as shown below – 

                     

Now, for any given input string . If  goes through a sequence of 

states  then it produces the output 

sequence . According to the construction, the Mealy 



machine  also goes through the same sequence of states but produces the following output 

sequence. 

                                       

Hence: , proving the equivalence as defined. 

Note that, to construct an equivalent Moore machine from a Mealy machine we cannot adopt 

the reverse process given in the above constructions i.e. simply push the output associated 

with a transition to the state (where this, transition leads to) to be considered as the output 

produced by the state. This is because, there may be two transitions going to a state with 

different outputs associated with it as shown below. 

This is an ambiguous situation as we are not sure which output symbol (0 or 1) is to be 

associated with the state q 

 

 

This situation can be handled by creating copies of the state q for all different outputs 

associated with incoming transitions (keeping all other things same) as shown below. 

                                           

Number of states are increase to remember different output symbols associated with moving 

transitions, and hence, states are considered to be order pairs in the Mealy machine. This 

construction is presented formally in the theorem given below. 

Theorem : If  is a Mealy machine, then there is a Moore machine 

 equivalent to . 

Proof : We construct a Moore machine 

                                       



Where b0 is any symbol in  . Transition ' is defined as 

       

That is, the first component of 's state determines the moves of  and the second 

component of  is the output associated with some transition in   into the state q. 

Output functions ' of  is defined as  

Following the construction, it can easily been shown that if  produces the output 

string  in response to the input string  after going through the 

states , then  also produces the same output string in response to the same input 

string after going through the states  

Example 3 : The equivalent Mealy machine for the Moore machine given in example 1 is 

produced below. 

 Example 3 : The equivalent Mealy machine for the Moore machine given in example 1 is 

produced below.               

                 

  

                            

Example: 4 The Moore machine which is equivalent to the Mealy machine given is example 

2 is shown below. 



                          

The states [q1,0] & [q1,1] an be renamed as q1 & q3 respectively. 

 

4.9 CHECK YOUR PROGRESS 

Fill in the blanks: 

1) A Moore machine is a ____________ 

2) Two DFA are isomorphic if they accept __________  

3) For any regular language L there is a _________ 

4) Moore and Mealy machines both produces__________  

5) If L(M) is infinite, then there must exist a __________ in the directed graph. 

 

4.10 ANSWER CHECK YOUR PROGRESS 

1) Six tuple 

2) Bijection 

3) Unique DFA 

4) Output 

5) Cycle 

 

 



4.11 MODEL QUESTION 

Qs-1) What is Deterministic Finite Automata (DFA) isomorphism explain with the help 
of example? 

Qs-2) What is Equivalence of Moore and Mealy machines? 

Qs-3) What is Mealy machine? 

Qs-4) What is Moore machine? What do you understand by equivalence of moore 
and mealy machines 

Qs-5) Write Algorithm to decide emptiness? 
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5.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding Pushdown Automata, Formal Definitions, 

Explanation of the transition function, Configuration or Instantaneous Description (ID), 

Nondeterministic Finite Automata (NFA), Language accepted by a PDA. We also understand 

Equivalence of PDAs and CFGs, CFA to PDA 

. 

 

5.2 PUSHDOWN AUTOMATA 

 

Regular language can be characterized as the language accepted by finite automata. 

Similarly, we can characterize the context-free language as the language accepted by a class 

of machines called "Pushdown Automata" (PDA). A pushdown automation is an extension of 

the NFA. 

It is observed that FA have limited capability. (in the sense that the class of languages 

accepted or characterized by them is small). This is due to the "finite memory" (number of 

states) and "no external memory" involved with them. A PDA is simply an NFA augmented 

with an "external stack memory". The addition of a stack provides the PDA with a last-

in, first-out memory management cpapability. This "Stack" or "pushdown store" can be used 

to record a potentially unbounded information. It is due to this memory management 

capability with the help of the stack that a PDA can overcome the memory limitations that 

prevents a FA to accept many interesting languages like . Although, a PDA can 

store an unbounded amount of information on the stack, its access to the information on the 

stack is limited. It can push an element onto the top of the stack and pop off an element from 

the top of the stack. To read down into the stack the top elements must be popped off and are 

lost. Due to this limited access to the information on the stack, a PDA still has some 

limitations and cannot accept some other interesting languages. 

 

 



 

As shown in figure, a PDA has three components: an input tape with read only head, a finite 

control and a pushdown store. 

The input head is read-only and may only move from left to right, one symbol (or cell) at a 

time. In each step, the PDA pops the top symbol off the stack; based on this symbol, the 

input symbol it is currently reading, and its present state, it can push a sequence of symbols 

onto the stack, move its read-only head one cell (or symbol) to the right, and enter a new 

state, as defined by the transition rules of the PDA. 

PDA are nondeterministic, by default. That is, - transitions are also allowed in which the 

PDA can pop and push, and change state without reading the next input symbol or moving its 

read-only head. Besides this, there may be multiple options for possible next moves. 

5.2.1 FORMAL DEFINITIONS 

Formally, a PDA M is a 7-tuple M =  

where, 

•  is a finite set of states, 

•  is a finite set of input symbols (input alphabets), 

•  is a finite set of stack symbols (stack alphabets), 

•  is a transition function from to subset of  

•  is the start state 

•  , is the initial stack symbol, and 

• , is the final or accept states. 

 

5.2.2 EXPLANATION OF THE TRANSITION FUNCTION,  : 

If, for any , . This means intitutively that 

whenever the PDA is in state q reading input symbol a and z on top of the stack, it can 

nondeterministically for any i,  

• go to state  

• pop z off the stack 

• push  onto the stack (where ) (The usual convention is that 

if , then  will be at the top and  at the bottom.) 

• move read head right one cell past the current symbol a. 



• Final states are indicated by double circles and the start state is indicated by an arrow 

to it from nowhere. 

5.3 CONFIGURATION OR INSTANTANEOUS DESCRIPTION 

(ID) : 

• A configuration or an instantaneous description (ID) of PDA at any moment during its 

computation is an element of  describing the current state, the portion of 

the input remaining to be read (i.e. under and to the right of the read head), and the 

current stack contents. Only these three elements can affect the computation from that 

point on and, hence, are parts of the ID. 

• The start or initalconfiguartion (or ID) on input is . That is, the PDA 

always starts in its start state,  with its read head pointing to the leftmost input 

symbol and the stack containing only the start/initial stack symbol, . 

• The "next move relation" one figure describes how the PDA can move from one 

configuration to another in one step. 

 

Formally, 

 

iff   

'a' may be  or an input symbol. 

Let I, J, K be IDs of a PDA. We define we write I K, if ID I can become K after 

exactly i moves. The relations  and  define as follows 

I  K 

I  J if  such that I  K and K  J 

I  J if  such that I  J. 

 

 

5.4 NONDETERMINISTIC FINITE AUTOMATA (NFA) 

That is,  is the reflexive, transitive closure of . We say that I  J if the 

ID J follows from the ID I in zero or more moves. 

( Note : subscript M can be dropped when the particular PDA M is understood. ) 



  

5.4.1 LANGUAGE ACCEPTED BY A PDA M 

  

There are two alternative definiton of acceptance as given below. 

1. Acceptance by final state : 

Consider the PDA . Informally, the PDA M is said to accept its 

input by final state if it enters any final state in zero or more moves after reading its entire 

input, starting in the start configuration on input . 

Formally, we define L(M), the language accepted by final state to be 

{  |  for some and } 

  

2. Acceptance by empty stack (or Null stack) : The PDA M accepts its input by empty 

stack if starting in the start configuration on input , it ever empties the stack w/o pushing 

anything back on after reading the entire input. Formally, we define N(M), the language 

accepted by empty stack, to be 

{  |   for some  } 

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the 

empty set i.e. F = Q . 
 

Example 1 : Here is a PDA that accepts the language . 

 

 

 

 

, and  consists of the following transitions 

 

 

 



The PDA can also be described by the adjacent transition diagram. 

 

formally, whenever the PDA M sees an input a in the start state  with the start symbol z on 

the top of the stack it pushes a onto the stack and changes state to . (to remember that it 

has seen the first 'a'). On state  if it sees anymore a, it simply pushes it onto the stack. Note 

that when M is on state , the symbol on the top of the stack can only be a. On state  if it 

sees the first b with a on the top of the stack, then it needs to start comparison of numbers 

of a's and b's, since all the a's at the begining of the input have already been pushed onto the 

stack. It start this process by popping off the a from the top of the stack and enters in state q3 

(to remember that the comparison process has begun). On state , it expects only b's in the 

input (if it sees any more a in the input thus the input will not be in the proper form of anbn). 

Hence there is no more on input a when it is in state . On state  it pops off an a from the 

top of the stack for every b in the input. When it sees the last b on state q3 (i.e. when the 

input is exaushted), then the last a from the stack will be popped off and the start symbol z is 

exposed. This is the only possible case when the input (i.e. on -input ) the PDA M will 

move to state which is an accept state. 

we can show the computation of the PDA on a given input using the IDs and next move 

relations. For example, following are the computation on two input strings. 

Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs 

using the transition function defined 

  ( using transition 1 ) 

 ( using transition 2 ) 

( using transition 3 ) 

( using transition 4 ) 

( using transition 5 ) 

 is final state. Hence ,accept. So the string aabb is rightly accepted by M. 



 

we can show the computation of the PDA on a given input using the IDs and next move 

relations. For example, following are the computation on two input strings. 

i) Let the input be aabab. 

 

 

 
No further move is defined at this point. 

Hence the PDA gets stuck and the string aabab is not accepted. 

Example 2 : We give an example of a PDA M that accepts the set of balanced strings of 

parentheses [] by empty stack. The PDA M is given below. 

 where  is defined as 

 
Informally, whenever it sees a [, it will push the ] onto the stack. (first two transitions), and 

whenever it sees a ] and the top of the stack symbol is [, it will pop the symbol [ off the stack. 

(The third transition). The fourth transition is used when the input is exhausted in order to 

pop z off the stack ( to empty the stack) and accept. Note that there is only one state and no 

final state. 

The following is a sequence of configurations leading to the acceptance of the string [ [ ] [ ] ] 

[ ]. 

  

 
  

Equivalence of acceptance by final state and empty stack. 

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by 

final state and empty stack- are equivalent in the sense that if a language can be accepted by 

empty stack by some PDA, it can also be accepted by final state by some other PDA and vice 

versa. Hence it doesn't matter which one we use, since each kind of machine can simulate the 

other.Given any arbitrary PDA M that accpets the language L by final state or empty stack, 

we can always construct an equivalent PDA M with a single final state that accpets exactly 

the same language L. The construction process of M' from M and the proof of equivalence 

of M & M' are given below. 

There are two cases to be considered. 

CASE I : PDA M accepts by final state, Let  Let qf be a new state 

not in Q. Consider the PDA where  as well as the 

following transition. 

 contains  and . It is easy to show that M and M' are 

equivalent i.e. 

L(M) = L( ) 



Let L(M) . Then  for some and  

Then   

Thus  accepts  

Conversely, let  accepts i.e. L( ), then  

 for  inherits all other moves except the last one from M. Hence 

 for some . 

Thus M accepts . Informally, on any input simulate all the moves of M and enters in its 

own final state  whenever M enters in any one of its final status in F. Thus  accepts a 

string iff M accepts it. 

  

CASE II : PDA M accepts by empty stack. 

We will construct  from M in such a way that  simulates M and detects 

when M empties its stack.  enters its final state  when and only when M empties its 

stack.Thus will accept a string iff M accepts. 

Let  where  and X and 

 contains all the transition of , as well as the following two transitions. 

 and 

 
Transitions 1 causes  to enter the initial configuration of M except that  will have its 

own bottom-of-stack marker X which is below the symbols of M's stack. From this point 

onward  will simulate every move of M since all the transitions of M are also in . 

If M ever empties its stack, then when simulating M will empty its stack except the 

symbol X at the bottom. At this point,  will enter its final state  by using transition rule 

2, thereby (correctly) accepting the input. We will prove that M and are equivalent. 

Let M accepts . Then 

  for some . But then 

( by transition rule 1) 

 ( Since  includes all the moves of M ) 

 ( by transition rule 2 ) 

Hence,  also accepts . 

  

Conversely, let  accepts . 

Then  for some  

Every move in the sequence 

 were taken from M. 



Hence, M starting with its initial configuration will eventually empty its stack and accept the 

input i.e. 

  
 

 

 

5.4.2 EQUIVALENCE OF PDAS AND CFGS 

We will now show that pushdown automata and context-free grammars are equivalent in 

expressive power, that is, the language accepted by PDAs are exactly the context-free 

languages. To show this, we have to prove each of the following: 

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the same 

language generated by G. 

ii) Given any arbitrary PDA M there exists a CFG G that generates exactly the same language 

accepted by M. 

 

CHECK YOUR PROGRESS  

True/False type questions  

1) A pushdown automation is an extension of the NFA._________. 

2) FA have limited capability.___________. 

3) The langauge accepted by a class of machines called Pushdown Automata____________. 

4) PDA does not accepts by empty stack.___________. 

 

5) A PDA has Five components___________. 

 

Answers- 

1) True 
 
2) True 
 
3) True 
 
4) False 
 
5) False 

 

 



5.5 CFA to PDA 

We will first prove that the first part i.e. we want to show to convert a given CFG to an 

equivalent PDA. 

Let the given CFG is . Without loss of generality we can assume that G is in 

Greibach Normal Form i.e. all productions of G are of the form . 

  where and . 

From the given CFG G we now construct an equivalent PDA M that accepts by empty stack. 

Note that there is only one state in M. Let 

, where 

• q is the only state 

•  is the input alphabet, 

• N is the stack alphabet , 

• q is the start state. 

• S is the start/initial stack symbol, and , the transition relation is defined as follows 

1.  

For each production , . 

We now want to show that M and G are equivalent i.e. L(G)=N(M). i.e. for any 

.  iff . 

 

If , then by definition of L(G), there must be a leftmost derivation starting 

with S and deriving w. 

i.e.  

Again if , then one sysmbol. Therefore we need to show that for any . 

 iff . 

But we will prove a more general result as given in the following lemma. 

Replacing A by S (the start symbol) and by gives the required proof. 

Lemma For any , and ,  via a leftmost derivative iff 

 . 

 



Proof : The proof is by induction on n. 

Basis : n = 0 

 iff  i.e.  and  

iff  

iff  

Induction Step : 

First, assume that  via a leftmost derivation. Let the last production applied in their 

derivation is  for some  and . 

 

Then, for some ,  

 

where  and  

Now by the indirection hypothesis, we get, 

.............................................................................(1) 

  

Again by the construction of M, we get 

 

 so, from (1), we get 

 

since  and , we get 

 



That is, if , then . Conversely, assume that 

 and let 

 be the transition used in the last move. Then for some , 

and  

 where  and . 

Now, by the induction hypothesis, we get 

 via a leftmost derivation. 

Again, by the construction of M,  must be a production of G. [ 

Since ]. Applying the production to the sentential form we get 

 

i.e.  

via a leftmost derivation. 

Hence the proof. 

 

Example : Consider the CFG G in GNF 

S aAB 

A a / aA 

B a / bB 

The one state PDA M equivalent to G is shown below. For convenience, a production 

of G and the corresponding transition in M are marked by the same encircled number. 

(1) S aAB 

(2) A a 

(3) A aA 

(4) B a 

(5) B bB 

 

We have used the same construction discussed earlier. 



 

5.6 SOME USEFUL EXPLANATIONS : 

Consider the moves of M on input aaaba leading to acceptance of the string. 

Steps 

1. (q, aaaba, s) ( q, aaba, AB ) 

2.                      ( q, aba, AB ) 

3.                      ( q, ba, B ) 

4.                      ( q, a, B ) 

5.                      ( q, ,  )     Accept by empty stack. 

 

Note : encircled numbers here shows the transitions rule applied at every step. 

Now consider the derivation of the same string under grammar G. Once again, the production 

used at every step is shown with encircled number. 

            S  aAB  aaAB  aaaB  aaabB  aaaba 

Steps  1     2        3      4        5 

Observations: 

• There is an one-to-one correspondence of the sequence of moves of the PDA M and 

the derivation sequence under the CFG G for the same input string in the sense that - 

number of steps in both the cases are same and transition rule corresponding to the 

same production is used at every step (as shown by encircled number). 

• considering the moves of the PDA and derivation under G together, it is also 

observed that at every step the input read so far and the stack content together is 

exactly identical to the corresponding sentential form i.e. 

<what is Read><stack> = <sentential form> 

 

Say, at step 2, 

Read so far = a 

stack = AB 

Sentential form = aAB 



From this property we claim that 

 iff . If the claim is true, then apply with  and we get 

 iff  

or  iff  ( by definition ) 

Thus N(M) = L(G) as desired. Note that we have already proved a more general version of 

the claim. 

 

5.6.1 PDA and CFG 

We now want to show that for every PDA M that accpets by empty stack, there is 

a CFG G such that L(G) = N(M) 

we first see whether the "reverse of the construction" that was used in part (i) can be used 

here to construct an equivalent CFG from any PDA M. 

It can be show that this reverse construction works only for single state PDAs. 

• That is, for every one-state PDA M  there is CFG G such that L(G) = N(M). For 

every move of the PDA M  we introduce a 

production  in the grammar 

 where N = T and . 

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M). 

But the reverse construction does not work for PDAs with more than one state. For example, 

consider the PDA M produced here to accept the langauge  

 

Now let us construct CFG  using the "reverse" construction. 

( Note  ). 

Transitions in M Corresponding Production in G 

  

 

 

 

 



 

 

  

We can drive strings like aabaa which is in the language. 

 

But under this grammar we can also derive some strings which are not in the language. e.g 

 

Therefore, to complete the proof of part (ii) we need to prove the following claim also. 

Claim: For every PDA M there is some one-state PDA  such that . 

It is quite possible to prove the above claim. But here we will adopt a different approach. We 

start with any arbitrary PDA M that accepts by empty stack and directly construct an 

equivalent CFG G. 

 

5.6.2 PDA to CFG 

We want to construct a CFG G to simulate any arbitrary PDA M with one or more states. 

Without loss of generality we can assume that the PDA M accepts by empty stack. 

The idea is to use nonterminal of the form <PAq> whenever PDA M in state P with A on top 

of the stack goes to state . That is, for example, for a given transition of the PDA 

corresponding production in the grammar as shown below, 

And, we would like to show, in general, that  iff the PDA M, when started from 

state P with A on the top of the stack will finish processing , arrive at state q and 

remove A from the stack. 

But we have to consider the more general transition rule as shown below. 

With this, we are now ready to give the construction of an equivalent CFG G from a given 

PDA M. we need to introduce two kinds of producitons in the grammar as given below. The 

reason for introduction of the first kind of production will be justified at a later point. 

Introduction of the second type of production has been justified in the above discussion. 

Let  be a PDA. We construct from M a equivalent 

CFG  

Where 



• N is the set of nonterminals of the form <PAq> for  and 

and P contains the follwoing two kind of production 

•  

• If , then for every choice of the sequence 

, , . 

• nclude the follwoing production 

•  

• If n = 0, then the production is . 

• For the whole excercise to be meaningful we want 

•  means there is a sequence of transitions ( for PDA M ), starting in 

state q, ending in , during which the PDA M consumes the input string  and 

removes A from the stack (and, of course, all other symbols pushed onto stack in A's 

place, and so on.) 

• That is we want to claim that 

•  iff   

• If this claim is true, then let  to get  iff 

 for some . But for all  we have  as production in G. 

Therefore, 

•  iff  i.e.  iff PDA M accepts w by empty 

stack or L(G) = N(M) 

• Now, to show that the above construction of CFG G from any PDA M works, we 

need to prove the proposed claim. 

• Note: At this point, the justification for introduction of the first type of production (of 

the form ) in the CFG G, is quite clear. This helps use deriving a string 

from the start symbol of the grammar. 

• Proof : Of the claim  iff    for some , 

 and  

The proof is by induction on the number of steps in a derivation of G (which of 



course is equal to the number of moves taken by M). Let the number of steps taken 

is n. 

• he proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part 

• If  then . 

• Basis is n =1 

Then . In this case, it is clear that . Hence, by 

construction  is a production of G.  

 

5.6.3 INDUCTIVE HYPOTHESIS : 

•    

• 5.6.4 INDUCTIVE STEP :   

• For n >1, let w = ax for some  and  consider the first move of the 

PDA M which uses the general transition 

=   . Now M must remove 

 from stack while consuming x in the remaining n-1 moves. 

 

• Let , where  is the prefix of x that M has consumed when 

 first appears at top of the stack. Then there must exist a sequence of states in M (as 

per construction)  (with ), such that 

• So, applying inductive hypothesis we get 

• , . But corresponding to the original 

move  in M we have added the following 

production in G. 

• We can show the computation of the PDA on a given input using the IDs and next 

move relations. For example, following are the computation on two input strings. 

i) Let the input be aabb. we start with the start configuration and 

proceed to the subsequent IDs using the transition function defined 

•  ( using transition 1 ) 



•  ( using transition 2 ) 

•  ( using transition 3 ) 

we can show the computation of the PDA on a given input using the IDs and next move 

relations. For example, following are the computation on two input strings. 

i) Let the input be aabab. 

 

 

 

No further move is defined at this point. 

Hence the PDA gets stuck and the string aabab is not accepted. 

The following is a sequence of configurations leading to the acceptance of the string [ [ ] [ ] ] 

[ ]. 

 

 

 

Equivalence of acceptance by final state and empty stack. 

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by 

final state and empty stack- are equivalent in the sense that if a language can be accepted by 

empty stack by some PDA, it can also be accepted by final state by some other PDA and vice 

versa. Hence it doesn't matter which one we use, since each kind of machine can simulate the 

other.Given any arbitrary PDA M that accpets the language L by final state or empty stack, 

we can always construct an equivalent PDA M with a single final state that accpets exactly 

the same language L. The construction process of M' from M and the proof of equivalence 

of M & M' are given below. 

There are two cases to be considered. 

CASE 1 : PDA M accepts by final state, Let . Let be a new 

state not in Q. Consider the PDA  where  as well as 

the following transition. 

 contains  and . It is easy to show that M and  are 

equivalent i.e. . 



Let . Then  for some  and  

Then . 

Thus  accepts . 

Conversely, let accepts i.e.  , then 

 for some .  inherits all other moves except the last one from M. Hence 

 for some . 

Thus M accepts . Informally, on any input  simulate all the moves of M and enters in 

its own final state  whenever M enters in any one of its final status in F. Thus  accepts 

a string iff M accepts it. 

CASE 2 : PDA M accepts by empty stack. 

we will construct  from M in such a way that  simulates M and detects 

when M empties its stack. enters its final state  when and only when M empties its 

stack.Thus will accept a string iff M accepts. 

  

Let  where and and 

contains all the transition of , as well as the following two transitions. 

 and 

 

Transitions 1 causes  to enter the initial configuration of M except that  will have its 

own bottom-of-stack marker X which is below the symbols of M's stack. From this point 

onward M' will simulate every move of M since all the transitions of M are also in . 

If M ever empties its stack, then  when simulating M will empty its stack except the 

symbol X at the bottom. At this point,  will enter its final state by using transition rule 

2, thereby (correctly) accepting the input. we will prove that M and  are equivalent. 

Let M accepts . Then 

 for some . But then, 

 ( by transition rule 1 ) 

  ( since  include all the moves of M ) 



  ( by transition rule 2 ) 

Hence,  also accepts . 

Conversely, let accepts . 

Then    for some Q . 

Every move in the sequence 

 were taken from M. 

Hence, M starting with its initial configuration will eventually empty its stack and accept the 

input i.e. 

 . 

 

5.7 CONCLUSION 

This module explains about the basic understanding Pushdown Automata, Formal 

Definitions, Explanation of the transition function, Configuration or Instantaneous 

Description (ID), Nondeterministic Finite Automata (NFA), Language accepted by a PDA, 

Equivalence of  PDAs and CFGs, CFA to PDA.   

 

5.8 CHECK YOUR PROGRESS 

Fill in the blanks: 

 

1) A PDA has __________ components. 

 

2) A__________________ is an extension of the NFA. Pushdown automation 

 

3) A PDA M is a 7-tuple M _______________ 

 

4) _______________________can be used to record a potentially unbounded information.  

 

5) The Grammer accepted by CFG is______________ 

 

 

 

5.9 ANSWER CHECK YOUR PROGRESS 

1) Three 

 

2) Pushdown automation 



 

3)  

 

4) "Stack" or "pushdown store" 

 

5) PDA 

 

 

5.10 MODEL QUESTION 

Qs-1) What is PDA explain with example? 

 

Qs-2) How many components are there in PDA explain? 

 

Qs-3) How many tuples are there in PDA write all of them? 

 

Qs-4) What are two language accepted by PDA explain? 

 

Qs-5) What is the full form of CFG And PDA? 
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6.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of Deterministic Pushdown Automata (DPDA) 

and Deterministic Context-free Languages (DCFLs) along with the concepts of DPDAs and 

FAs: DCFLs and Regular languages. It discusses CFLs and DCFLs, Standard forms of 

DPDAs, Acceptance by final state and empty stack. We also understand the deep insights of 

Unambiguous CFGs and DPDAs. Parsing and DPDAs are also elaborated in the chapter. 

 

6.2 DETERMINISTIC PUSHDOWN AUTOMATA (DPDA) and 

DETERMINISTIC CONTEXT-FREE LANGUAGES (DCFLs) 

Pushdown automata that we have already defined and discussed are nondeterministic by 

default, that is, there may be two or more moves involving the same combinations of state, 

input symbol, and top of the stock, and again, for some state and top of the stock the machine 

may either read and input symbol or make an - transition (without consuming any input). 

In deterministic PDA, there is never a choice of move in any situation. This is handled by 

preventing the above mentioned two cases as described in the definition below. 

Definition: Let  be a PDA. Then M is deterministic if and only if 

both the following conditions are satisfied. 

1.  has at most one element for any and  (this 

condition prevents multiple choice for any combination of ) 

2. If  and  for every  

(This condition prevents the possibility of a choice between a move with or without 

an input symbol). 

 

A language L is said to be deterministic context-free (DCFL) if there is some DPDA 

accepting L. 

Example: The language  is a DCFL. The following DPDA accepts L 



 

 

The moves satisfying the conditions given in the definition. As the PDA reads the first half of 

the input, it remains in the start state q0and pushes the input symbols on the stock. When it 

reads the symbol  it changes the state from q0 to q1without changing the stock. On state 

q1 it simply matches input symbols with the stock symbols and erases in case of a match. 

That is, the symbol the moves satisfying the conditions given in the definition. As the PDA 

reads the first half of the input, it remains in the start state q0 and pushes the input symbols 

on the stock. When it reads the symbol , it changes the state from q0 to q1 without changing 

the stock. On state q1 it simply matches input symbols with the stock symbols and erases in 

case of a match. That is, the symbol in  tells the m/c when to start looking for  Once 

the input is extended, then the symbol z0 on stock indicates a proper match for the input to 

be  and hence it accepts by entering state q2, which is a final state. 

Example: Consider the language  In this case there is no way to 

determine when to start comparison because of absence of the symbol in the middle/ 

The PDA in this case has to guess non-deterministically when the middle symbol comes in 

the input. 

 

6.3 DPDAs and FAs: DCFLs and REGULAR LANGUAGES 

Equivalence of DFA & NFA proves that non determination does not add power in case 

of FA s. But it is not true in case of PDA s, i.e., it can be shown that nondeterministic PDA s 

are more powerful than DPDA s. In fact, DCFL s is a class of languages that lies properly 

between the class of regular languages and CFL s. The following discussion proves this fact. 

Theorem: If L is a regular language, then there is some DPDA M such that  . 

Proof: Since L is regular, then exists a DFA D such that . 



The PDA M can be constructed from D (with an additional stock) that simulates all the 

moves of D on any input just by ignoring its stock. That is if 

 when  Such that  It is easy to see 

that  

Again, the language can be shown to be non-regular by using pumping lemma. But, 

the DPDA presented in the example above accepts this language. 

Hence the class of DCFL s properly includes the class of regular languages. 

 

6.4 CFLs and DCFLs 

We now show that class of languages accepted by DPDA s is properly included in the CFLS. 

First, note that, every DCFL is a CFL since every DPDA is a special case of a PDA. 

Now, there are two ways to prove the proper inclusion- direct method or indirect method. 

In the direct method we need to show that there exists a language which is CFL but 

not DCFL. We have already argued intuitively that the language  is a CFL but not 

a DCFL. We will show later that there is a CFL which is not a DCFL. 

The indirect method follows the following steps to prove the fact- 

First, prove the fact that DCFL s are closed under complement. 

But, it is fact that CFL 's are not closed under complement. 

Hence, there must exist a CFL that is not s DCFL . 

 

6.5 STANDARD FORMS of DPDAs 

It is possible to put every DPDA in some standard form where the only stack operations are 

to erase the top symbol without putting anything else on the stack; or to push a single symbol 

onto the stack on top of the symbol that was previously on top; or to leave the stack 

unchanged. The following two lemma establishes this fact. 

Lemma 1: If L is a DCFL, then L=L(M) for some  such that 

if , then  



Proof: Let the  accepts L and has a 

move  with  The DPDAM simulates this move by using some 

more states and a sequence of moves as follows. 

      Let  

      Let  are nonaccepting states in M (which is not in M'). The move 

       in M' is redefined as  in M. 

  

Then the following moves are introduced in M. 

            for .finally introduce, 

           

That is, the DPDA M enters the state p after replacing X with  (after starting at 

state q, on input a and with X on the top of the stack). But ---- it now takes a sequence of 

moves (  number of moves to be precise) for the same. 

Lemma 2: If L is a DCFL, then L=L(M) for some  such that 

if ,then  is either  or of the form XY for some  

Proof: Let  for some DPDA. 

           

without loss of generality assume that M' 

satisfies Lemma 1 given above. We now construct M from M' as follows. 

                    

1. If M' pops its stock, then M pops its stock and remembers the symbol popped (in its 

finite control) by the move 



            if,  is in M'. 

2. If M' changes its top symbol of the stock, then M remembers this without changing its 

top of the stock that is . 

           if  is in M'. 

3. M pushes a symbol onto its store whenever the stock size of M' increases, that 

is  

           if  is in M' 

It can be shown by induction s that L(M)=L(M') 

Theorem: The language  is not a DCFL. 

Proof: Assume for contradiction that there is some DPDA  accepting 

L. Without loss of generality, we can assume that P is in standard form, i.e., every move 

of P is either of the form 

              

or one of the forms 

            

Where  and  .Note that, for P to reject an input string it may 

not read the whole string (it may enter a configuration at which no transition is defined or it 

may execute a never-ending sequence of -moves). On the other hand if P accepts a 

string , then it must eventually read the whole string. 

We know that if  Thus  is also in L. 

Since P accepts both x and , the sequence of moves it makes while processing the first 

part x of the string must be exactly similar to that it makes on input x irrespective of 

whether x is followed by any other string or not. This is because of the fact that P is 

deterministic in nature. 

After processing x at the stock content of P be with for some . Now, if P starts 

reading subsequent symbols from some string y (i.e. P may be assumed to start with the string 

xy) and finishes reading it, then let the stock content be . We are sure that , 

since P must still be able to process some longer string with xy as the prefix. So, we have 



 for some  

In the above, 

Consider the string y' such that the length of the resulting stack content is minimum i.e. 

          for some , then  

So, once P reaches the configuration after processing xy', it cannot remove any 

symbol from the stock (since length cannot be reduced further) in the subsequent moves. 

Because a move of a DPDA in standard from that involves removing a single symbol from 

the stack reduces the height of the stack. 

Let  for some and . Since we may consider any string  in xy' 

there are infinite number of strings of the form xy . But the set of states and stack 

symbols, , respectively of P are infinite. Hence there must exist two different strings 

u=xy' and v=xy' in . Such that 

                   

    and         

 

  

We also know that the symbol X cannot be removed from the stack once P has entered this 

configuration. 

Therefore, for some  , if we consider the strings uZ and vZ, then we must have 

                              

                              

So, either both uZ and vZ are accepted or both are rejected by P. But since u and v are 

distinct, for some z one may be in L while other is not. This leads to a contradiction. (Since P 

should have accepted only one of these two, which is in L and the other should have been 

rejected.) 

Hence our assumption that P accepts L must be false. 



 

6.6 ACCEPTANCE BY FINAL STATE AND EMPTY STACK 

We have already proved in case of NPDA that the two methods of acceptance (by empty 

stack and final state) are equivalent. That is, a language L has an NPDA that accepts by final 

state if and only if some NPDA accepts it by empty stack. But this is not true for DPDAs. 

The language recognizing capability of DPDA s that accept by empty stack is much less than 

that of the other. This is proved in the following lemma. 

Lemma1: If a language L is accepted by a DPDA by empty stack, then L has the “prefix 

properly”. 

Before giving the proof of the above lemma we first define the “prefix properly” of a 

language. 

Definition: A language L is said to have the prefix properly if whenever , no proper 

prefix of x is in L 

Example: The language  has the prefix properly; since if , then no proper 

prefix of  can be in L. This is because the symbol c identifies the mid-point of the 

string . In many proper prefixes of , the symbol c will not be the mid-point of that 

prefix. 

Again, consider the language  It is quite obvious that there are infinitely many pairs of 

stings in one of which is a prefix of the other e.g.,  both are in and 

 is a proper prefix of . This is a regular language and still not accepted by any DPDA by 

empty stack. 

It is to be noted that prefix property is not a severe restriction. Because we can always 

introduce a special end marker, say , not in  at the end of every string of a language L to 

convert it to a language with prefix property. That is is a language with 

prefix property. 

Assume for contradiction that the language L accepted by 

the DPDA by empty stack does not have the prefix property. Hence, 

there must exist two strings x and xy (with ) such that P accepts both. Then we have 

   , since . 

So, while processing the string xy, the DPDA must arrive at the configuration given below 

because of its deterministic property. 



           

From the point onward the DPDAP cannot move since it has already emptied its stock 

and . Hence, xy is not accepted by P as assumed. 

The lemma 2 given below shows that every language accepted by a DPDA by 

some DPDA that accepts by final state. 

Lemma 2: If L is accepted by some DPDA P that accepts by empty stock, then there is 

some DPDA P'that accepts by final state such that L=L(p'). 

Proof: If  accepts L by empty stack. 

 from P which simulate the behaviour of P as follows. 

        such that . 

        

         

         Contains all the moves of P and also the following. 

1.  

2.  

By using rule 1, P' simply enters the initial configurations of P pushing Z0above the bottom 

of stock marker Z0'. Then P' simulates the behaviour of P on any input string. 

When P accepts 

a string, it empties its stock and at that point P0' would expose the bottom of stock marker Z0' 

and enters the final state P' by using rule 2. So, it is obvious that, an input string X is accepted 

by P iff it is accepted by P'. 

The converse of lemma 2 is not necessarily true. But it can be shown that every language that 

has the prefix property and is accepted by a DPDA with final state is also accepted by 

some DPDA that accepts by empty stock, as given in the lemma 3. 

Lemma 3: If a language L has the prefix property and is accepted by a DPDAP by final state, 

then there is some DPDA P' that accepts by empty stock such that L=L(P'). 

Proof: Let  for DPDA 



            that accepts by final state. We construct P' from P as follows. 

 

P' contains all the moves of P besides the following. 

1. The first move of P' is to go to the initial configuration of P by pushing the start 

symbol Z0' of P'on top of the stock. From this point onward P' simulates the behavior 

of P (using P's moves) on any input string. Even if P empties its stack without 

accepting the input, P' will not empty its stock because of the new start symbol that 

was pushed on to the top of the stock initially. 

2. If P enters an accepting state, P' simply enters the state P'. 

3. On state P' , the DPDA P' erases all the stock symbols without bothering the input 

eventually emptying its stock. So, P' accepts a string X where P accepts it and vice 

versa. 

Now lemma 1,2,3 together gives us the following theorem. 

Theorem: A language L is accepted by a DPDA by empty stock if and only if it has the prefix 

property and is accepted by some DPDA by final state. 

 

CHECK YOUR PROGRESS  

True/False type questions  

1) Every DCFL is a CFL since every DPDA is a special case of a PDA.____________ 

2) In deterministic PDA, there is never a choice of move in any situation__________. 

3) A parser is an algorithm to determine whether a given string is in the language generated 

by a given CFG_____________  

4) Pushdown automata that we have already defined and discussed are deterministic by 

default_____________ 

5) DPDA does  involve backtracing__________ 

Answers- 

1) True 

2) True 

3) True 

4) False 

5) False 

 



6.7 UNAMBIGUOUS CFGs and DPDAs 

It is interesting to note the language accepted by a DPDA must have an unambiguous 

grammar. We first prove it for a DPDA that accepts by empty stock and then extend it to 

a DPDA that accepts by final state. 

Theorem: If L is accepted by some DPDAM that accepts by empty stock, then L must have 

an unambiguous CFG. 

Proof: In the construction of an equivalent CFG G for any given DPDAM (that has been 

discussed in the context of equivalence of PDAs and CFGs) if assume that M is deterministic 

(that accepts by empty stock), then the resulting grammar G generated can be shown to have 

unique leftmost derivation for every string (thus, proving that G is unambiguous). 

If M accepts a string w by empty stock, then because of deterministic nature of M there must 

be a unique sequence of moves and M cannot move once it empties its stock. If this sequence 

of moves is known, we can determine the exact choice of production rules in a leftmost 

derivation of w under G. Even though there may be many different rules in G for the 

move.  of M, only one of those will be consistent with the 

execution of M that actually drive w. 

We can now show that if L is accepted by some DPAM that accepts by final state, then L has 

an unambiguous grammar. 

 

Consider the language for some symbol  which is not a terminal symbol of M. Since L' has 

the prefix property. It is accepted by a DPDAM' that accepts by empty stock and, thus, there 

exists an unambiguous CFG G' with L=L(G’) (by the above theorem). We construct a CFG 

G from G' such that L=L(G) as follows. 

G and G' are exactly same except that we introduce a new nonterminal $ and a new 

production in G. Now, if , then G derives the string following 

exactly the same sequence of steps except at the last step, when G uses the production 

 to get rid of the symbol $. Since G' is unambiguous, G must also be unambiguous. 

 

6.8 PARSING and DPDAs 

The context-free languages are of great practical importance, especially, in defining 

programming languages. For example, we can use CFGs to model the syntax of arithmetic 

expressions, block structures in programming languages, etc. A compiler for such a 

programming language must then embody a parser to carry out the process of analysing a 

given input string in order to determine its grammatical structure with respect to the given 

grammar. That is, a parser is an algorithm to determine whether a given string is in the 

language generated by a given CFG and, if so, to construct a purse tree for the string (for 

further use at a later stage). 



We have already seen a cubic-time pursing algorithm (based on dynamic programming 

technique) that works for any given context-free language. For almost all practical purposes it 

is considered to be two slow. The most successful parser which have been developed in the 

recent past are based on the idea of a PDA. Since PDAs and CFGs are found to be equivalent 

one can develop a parser for CFLs that behave like PDAs. But because of the 

nondeterministic nature of PDAs, they are still not of immediate practical use in parsing. The 

parsing process may involve back tracking because of the nondeterministic steps and hence 

would lead to inefficiency. 

On the other hand, a parser rooted in the idea of a DPDA does not involve backtrack----ing 

and hence expected to work efficiently. Even though the capability of DPDAs are limited in 

the sense that they accept DCFLs which is a proper subset of CFLs, it turns out that the 

syntax of most programming languages can be modelled by means of DCFLs. One of the 

main motivations for studying DCFLs lies in the fact that- they can describe the syntax of 

programming languages and they can be parsed efficiently using DPDAs. To produce a 

compiler for a given programming language the syntax is required to be described by 

some CFG in restricted form that generate only DCFLs. There are different kinds of 

such CFGs in restricted forms. The LL- and LR-grammars are two important classes in this 

category. 

 

6.9 CONCLUSION 

After reading this module you will know the Deterministic Pushdown Automata (DPDA) and 

Deterministic Context-free Languages (DCFLs) along with the concepts of DPDAs and FAs: 

DCFLs and Regular languages. It discusses CFLs and DCFLs, Standard forms of DPDAs, 

Acceptance by final state and empty stack. It presents the deep insights of Unambiguous 

CFGs and DPDAs. Parsing and DPDAs are also elaborated in the chapter. 

 

6.10 CHECK YOUR PROGRESS 

Fill in the blanks: 

1) The full form of DPDA is________________________ 

2) Every DCFL is a __________ since every DPDA is a special case of a _____.  

3)  A  parser is an___________ to determine whether a given string is in the language 

generated by a given CFG. 

4) The parsing process may involve ______________ because of the nondeterministic steps 

and hence would lead to inefficiency. 

5) NPDA accepts it by _______________ 

 

 



6.11 ANSWER CHECK YOUR PROGRESS 

1) Deterministic push down automata. 

2) CFL  and PDA. 

3) Algorithm. 

4) Back tracking. 

5) Empty stack. 

 

6.12 MODEL QUESTION 

Qs-1) What is DPDA and DCFL? Explain their difference with suitable example. 

Qs-2) What is UNAMBIGUOUS CFGs? Explain. 

Qs-3) What do you understand by determinism? What are two necessary condition for 

determinism? 

Qs-4) What is CFL and DCFL? 

Qs-5) For regular language, then there is some DPDA explain? 
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UNIT-VII  SIMPLIFICATION OF CFG 

 

7.1 Learning Objectives 

7.2 Chomsky Normal Form (CNF) 

7.3 Greibach Normal Form (GNF) 

7.4 Conclusion 

7.5 Check your progress 

7.6 Answer Check your progress 

7.7 Model Question 

7.8 References 
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7.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of Simplification of CFG. It explains Chomsky 

Normal Form (CNF) and Greibach Normal Form (GNF) through various theorems, lemmas 

and step-wise elaborated solved examples. 

 
 
 

7.2 CHOMSKY NORMAL FORM (CNF) 

A CFG  is in Chomsky Normal Form (CNF) if all production are of the 

form 

A BC or A a 

Where A, B, C N and a . 

Note that since -production is not allowed, a CFG in CNF cannot generate the empty 

string . 

Theorem : For any CFG  there is a CFG in Chomsky 

normal form such that L(G') = L(G)-{ }. 

Proof : Without loss of generality we can assume that G doesnot contain any -production, 

unit production and useless symbols. (Even if it contains, we can use the procedures already 

described to remove all those). 

We use the following procedure to construct  from G. 

• and are suspects of N and P respectively. 

• For each terminal , introduce a new non terminal  in  and 

production in . and replace all occurrences of a on the right-hand sides of 

old productions (except productions of the form , i.e. where rhs is only one 

terminal symbol, a with . 

• After this step, all productions in will be of the form 

 or , where . ( K is greater than 2 because 

unit productions are already eliminated) 

• Clearly, the language generated by this new grammar is not changed; it just takes one 

more steps than before to generate a terminal symbol. 

• For all those productions  with , introduce a new non-

terminal C in  and replace this productions with two new productions in . 

and  . 

• Once again, it is easy to see that this transformed grammar generates the same 

langauge; it just takes one step more than before to generate a terminal string. 

• we repeat the above step until the right-hand sides of every production in  are of 

length at most 2. 



• The resulting grammar is now in CNF and 

clearly . 

 

 

Example : Consider the CFG :  generating the language . we 

will construct a CNF to generate the language  i.e. . 

Solutions : We first eliminate -productions ( generating the language ) using 

the procedure already described to get . 

Step 1 : Introduce nonterminals A, B and replace these productions 

with  

Step 2 : Introduce nonterminal C and replace the only production  (which is not 

allowable form in CNF) with  and  

The final grammar in CNF is now 

S AC | AB 

C SB 

A a 

B b 

 

 

CHECK YOUR PROGRESS  

True/False type questions  

1) A CFG in CNF cannot generate the empty string ._________ 

2) A CFG  is in Chomsky Normal Form (CNF) if all production are of the 

form 

A BC or A a_____________ 

3) The full form of CFG is Context full grammer.____________ 

4) The full form of GNF is GREIBACH NORMAL FORM._____________ 

5) For every CFG  with  , there is no equivalent 

CFG  in CNF.________ 



Answers- 

1) True 

2) True 

3) False 

4) False 

5)  True 

 

7.3 GREIBACH NORMAL FORM (GNF) 

A CFG  is in Greibach normal form if all productions in P are of the form 

 

for some , where  and . 

We will now show that every CFG can be transformed to an equivalent CFG in GNF. We first produce 
two lemmas which help proving this fact. 

Given any CFG G containing some left-recursive productions , we can construct an 

equivalent CFG removing those left-recursive productions by right-recursive productions. 

The following lemma proves this fact. 

Lemma 1 : Let  be CFG. Let  be the set of all left-

recursive A-productions and  be the remaining A-producitons in G. 

There is a CFG , where  and  contains all 

productions in P except the left-recursive A-productions and also contains the following 

additional productions 

 

 

 

such that  

 

Proof : We first show that L(G) L(G '). 



 are the only productions whcih are in G but not in . Consider a 

leftmost derivation in G that uses a sequence of productions from this set. In such a case, the 

leftmost nonterminal A must eventually be disposed off by using a production of the 

type , later on, for some . That is, we have a derivation as shown below 

 

The same derivation can be achieved in  as follows: 

 

 

Hence any derivation in G is also a derivation in G' and so L(G) L(G'). 

To show that L(G') L(G), we need to follow just the reverse process of the above. 

This shows that L(G)=L(G'). 

  

Lemma 2 : Let  be a CFG. Let A  and  be 

the set of all B-productions in P. There is a CFG  where 

 

such that  

Proof : We first show that  . It is clear that  is the only production 

in G not in G'. If a derivation in G uses this production, then the nonterminal B must 

eventually be disposed off, later on, by using a production of the form , . 

That is, we have the derivation 

 
We can simulate this derivation in as follows 

 
which takes one step less than the previous one. 

Hence any derivation in G is also, a derivation in  and so . 



Conversely, if  is used ( which is not in G ) in a derivation in , then the 

derivation will be of the form 

 

The production , are the only producitons which are in  but not in G. 

We can now simulate the above derivation in G as follows. 

 

Hence any derivation in  is a derivation in G. and so . 

Hence the proof. 

Theorem : For every CFG  with  , there is an equivalent 

CFG  in CNF. 

Proof : Without loss of generality, assume that G is in Chomsky normal form. Let the number of 

nonterminal in N be M. The following steps construct the equivalent CFG  from G. 

• The first step is to rename the nonterminals in N so that each one has a subscript, 

starting with 1upto m. So, the set of the nonterminals is now . This 
step, certainly doesnot change the resulting language. 

• The second step is to process the productions in P so that they satisfy the "Increasing 
Nonterminals Property" (INP) defined as follows: 

• INP is said to be satisfied to be satisfied, if all productions are in form 

 or , where and . 

• To enforce this property (INP) we start with -productions. Since G is in CNF, all -

productions are of the form  or  

• The first one satisfies the property. The second one also satisfies it, unless i =1. 

When i =1, the production is of the form  which is a left-recursive one and we 

can apply lemma 1 to eliminate left-recursion by introducing a new variable , say . So, 
we have the productions before application of Lemma 1 

•  

• Since G is in CNF, each  is some  and each  must begin with , j >1 or  

• We apply lemma 1 introducing the new nonterminal  and the production obtained 
from above after application of lemma 1 are 

•  

• and  

All the above -productions are of the form  or , where 

 and  



And the rhs of all - productions start with some  where . 

So, the resulting grammar, with the new set of productions, say , satisfies the INP. 

• Consider the processing of -productions to be the basis case 

• Assume that we have processed - through -productions , this way , 

introducing new nonterminals  through . That, all 

these  productions satisfy INP is the inductive hypothesis. 

• We now process -productions as the inductive step. Since G is in CNF , all -

productions are of the form  or  the first one satisfies the INP. The 

second one doesnot satisfy the property whenever . Consider 

 with . By induction hypothesis , all -production satisfy INP, thus of 

form  or  with and . Now, applying lemma 2 to 

replace  with the right hand side of Ai-productions to produce  (this 
satisfies INP) 

• and  

If  , we again replace  by the rhs of -production. 

• After atmost k-iterations, all -productions will be of the form 

•  

 with ,  
• The first and the third productions satisfy the INP. The second one doesnot satisfy it, 

because it is self recursive . 

• Apply lemma 1 again, introducing a new nonterminal, , to enforce the INP, exactly in 
a similar way as we did earlier . So, the resulting productions will satisfy the INP. 

• Hence, if we continue to process upto Am-productions, the resulting grammar will satisfy 
the INP (as proved by induction, above). 

• There may be atmost 2m nonterminals in  now, 

namely . 

• The third step is to process all these productions, starting with -produtcions down 

to -production, to get the equivalent CNF . m is the highest subscript of any 

nonterminal . So, by INP, all Am-productions are of the form , 

and . Thus this production, is in GNF already. 

• Consider the -productions. 

• By INP all -productions must be of the form 

•  (already in GNF) 

• and  where  



• we now apply lemma 2 to replace Am(in the rhs) with the right-hand side of Am-

production given above. This gives us -productions of the form  

 

 where  

Both type of production now satisfy GNF property. 

we inductively process down to the lowest subscripted nonterminal applying lemma 2 

wherever necessary. 

All productions now satisfy the GNF property i.e. of the form 

 

since we applied either lemma 1 or lemma 2 for any intermediate transformation the resulting 

grammar, say , must be equivalent to G i.e. . 

 

Example : A BB       B AC | a     C AB | BA | a . We will construct an equivalent CFG 

in GNF. 

Step 1: Renaming the nonterminal, we get 

 

Step 2 : -productions already satisfy INP. 

Process - and -productions to enforce the INP. 

First consider -productions: 

Apply lemma 2 to  obtaining . Now apply lemma 1 to eliminate 

left-recursion 

We get 

 

which satisfy the INP property. 

The resulting grammar is 



 

Next consider -productions. Applying lemma 2 to  we get 

 

Applying lemma 2 again on the first two -productions above we get 

 

Now, all productions satisfy the INP. 

The resulting grammar is: 

 

Step 3: All -productions and -productions are already in GNF. Apply lemma 2 to -

productions, to get . 

Similarly, applying lemma 2 to -production we get 

 

All the productions are in GNF now. So, the resulting equivalent grammar in GNF is 

 

 

7.4 CONCLUSION 

This module explains about the basic understanding of Simplification of CFG. It discusses 

Chomsky Normal Form (CNF) and Greibach Normal Form (GNF) with various theorems, 

lemmas and elaborated solved examples. 

 

7.5 CHECK YOUR PROGRESS 

Fill in the blanks: 



1) The Full form of CFG is ________________________ 

2) The full form of GNF is_________________________ 

3) The Greibach normal form if all productions in P are of the form_____________ 

4) The Full form of CNF is____________ 

5) A CFG_________________  is in Chomsky Normal Form (CNF) if all production are of 

the form 

 

7.6 ANSWER CHECK YOUR PROGRESS 

1) Context free Grammer 

2) Greibach normal form 

3)  

4) Chomsky Normal Form  

5)  

 

7.7 MODEL QUESTION 

Qs-1) What is CNF and what are steps for CNF to be in CFG? 

Qs-2) What is GNF and what are steps for CNF to be in GNF? 

Qs-3) Construct an equivalent CFG in GNF? 

Qs-4) What is INP and wHen it is said to be satisfied? 

Qs-5) For any CFG there is a CFG in Chomsky 

normal form such that L(G') = L(G){ }explain? 
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8.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of Context Free Languages (CFLs). It explains 

Closure Property of Context Free Languages (CFLs), Some Decision Algorithms for CFLs 

and Testing Finiteness of a CFL through various theorems, lemmas and step-wise elaborated 

solved examples. 

 

8.2 PUMPING LEMMA FOR CONTEXT FREE LANGUAGES (CFLs) 

There is a pumping lemma for CFLs similar to the one for regular language. It can be used in 

the same way to show that certain languages are not context-free. 

Informally, the pumping lemma for CFLs states that for every CFL L, every sufficiently long 

string can be subdivided into five substrings such that the middle three substrings are not too 

long, the second and fourth are not both empty, and if these two substrings such that the 

middle and fourth are not both empty, and if these two substrings are pumped simultaneously 

zero or more times, then the resulting string will always belong to L. 

Theorem (pumping lemma for CFLs): 

Let L be any CFL. Then there is a constant n > 0, depending only on L, such that every 

string  of length at least n can be as z = uvwxy such that 

 

Proof : Let G be a CFG in Chomsky Normal Form generating . Let the number of 

nonterminals in G is K and let the constant of pumping lemma . We will now show that 

all strings in L with length n or greater can be decomposed to satisfy the conditions of the 

pumping lemma. Let be such a string i.e.  or , and . Since

, then height (depth) of the parse tree for is at least k + 1. Hence, there is a path of 

length at least k + 1. in the parse tree for . Let p be a path of maximal length from root S to 

a leaf of the parse tree. Then P must contain at least k + 2 nodes, all of which are labelled by 

non-terminals except the leaf node which is labelled by a terminal symbol. Hence, there is at 

least k + 1 non-terminals in that path and since then and only k non-terminals in G, some 

variable must occur more than once on the path. We select R to be a nonterminal that repeat 

among the lowest k + 1 non-terminal on this path. To find the lowermost occurrence of R we 

follow the path up from the leaf keeping track of the labels encountered. Of the first k + 2 

nodes only the leaf has a terminal label. The remaining k + 1 node cannot have distinct 

nonterminal labels and hence we simply pick the first repetition of any non-terminal on that 

path and call it R. 

 



  

 

Figure 1 

We divide into uvwxy according to the figure given above. The derivation of can be 

given as follows 

 

Clearly, we have two subderivations 

     and       

The first one corresponds to the subtree rooted at the upper occurence of R and the second 

one corresponds to the subtree rooted at the lower occurence of R. Both these subtree are 

generated by the same nonterminal R, so we may substitute one for the ohter and still obtain a 

valid parse tree. Replacing the larger by the smaller generates the string uwy and 

hence . In this case, the upper occurence of R generates w directly using 

 instead of generating vwx using . This is shown in the middle 

figure.Similarly, replacing ths smaller subtree by the larger one repeatedly, as shown in the 

last figure, gives of parse trees for the strings  at each i >1. That establishes 

that . 

We now show that condition (i) and (ii) in the pumping lemma are satisfied by this 

decomposition. The subderivation  must begin with a rule of the form R AB. The 

second occurence of R is derived from either A or B. If it is derived from A, then the 

derivation can be written 

 



The string t is non-empty since it is obtained by a derivation from a non terminal in a CNF 

form grammar. Hence  must be non-empty. If the second occurrence of R is derived 

from B, a similar argument shows that v is non-empty. Hence, |vx| >0, giving condition (i). 

The stable rooted at the upper occurrence of R generates vwx. But this R is the first repetition 

of a variable in the longest path p in the parse tree starting from a leaf. i.e. both occurrence 

of R fall within the bottom k +1 variables on the path. Hence the subtree rooted at the upper 

occurrence of R has depth (or height) at most k +1. A tree of the height can generate a string 

of length at most  or less. Therefore , giving condition (ii). 

This completes the proof. 

Example: The language  is not context-free. 

Proof: We apply the pumping lemma to prove it. Assume, for contradiction , that L is a CFL. 

Let n be the constant of the lemma. consider the string . Evidently, 

 and . 

Therefore, according to the Lemma, there exists substrings u, v, w, x, y such 

that s = uvwxy and the following hold. 

1.  

2.  

3.  

vxy cannot start with some a, span all n b's, and finish with some c - condition (ii) above 

prohibits this. 

We now consider all other possibilities of occurence of vxy in S. 

Case 1 : vxy occur completely within the leading an symbols. Then pumping up once yields 

the string , where  (since number of a's gets increased) . 

Thus,  contradicting the lemma. 

Case 2 : If vxy occur completely within the middle  or trailing symbols, then we can 

apply exactly similar arguments as in case 1 to arrive at contradictions. 

Case 3 : If vxy occur partly in the an and partly in the , then pumping up once will yield a 

string that either contains more a's than c's and more b's than c's or contains some a's 

after bb's. In both cases, the resulting string is not in L and is a contradiction. 

Case 4: If vxy occur partly in the  and partly in the  then we can apply exactly similar 

arguments as in case 3 to arrive at a contradiction. 

These are the only possible cases to divide the string into substrings as per the lemma and in 

every case there is contradiction. Hence, L is not a CFL. 



Example:  is not context-free. 

Proof: Assume contradiction that L is a CFL. There is a constant n>0 such that any string 

in L of length at least n can be pumped according to the pumping lemma. 

Consider the string  in L. . So, we can write 

S = uvwxy such that 

1. |vx|>0 

2. |vwx| n and 

3.  for i 0 

By (i) and (ii), . Thus if we let i = 1 in (iii) (i.e. if we pump once), we get a 

string  where . Now if we arrange the elements of L in ascending order 

of length, thus the next element after must be of length  i.e. of 

length . 

Since , we conclude that ( which is of length  j ) is not in L, which 

contradicts the pumping lemma. 

Hence L is not a CFL. 

 

8.3 CLOSURE PROPERTY OF CONTEXT FREE LANGUAGES (CFLs) 

We consider some important closure properties of CFLs. 

Theorem : If  and  are CFLs then so is  

Proof : Let  and  be CFGs generating. Without loss 

of generality, we can assume that . Let  is a nonterminal not in  or . We 

construct the grammar  from  and , where 

, 

 

 



We now show that  

Thus proving the theorem. 

Let . Then . All productions applied in their derivation are also in . 

Hence  i.e.  

Similarly, if , then  

Thus . 

Conversely, let . Then  and the first step in this derivation must be 

either  or . Considering the former case, we have  

Since  and  are disjoint, the derivation  must use the productions of  only ( 

which are also in  ) Since  is the start symbol of . Hence, 

 giving . 

Using similar reasoning, in the latter case, we get . Thus . 

So, , as claimed. 

Theorem: If  and  are CFLs, then so is . 

Proof: Let  and  be the CFGs generating  and 

 respectively. Again, we assume that  and  are disjoint, and  is a nonterminal not 

in  or . we construct the CFG  from  and , where 

 

 

 



We claim that  

  

o prove it, we first assume that  and . Then  and . We can derive 

the string xy in  as shown below. 

 

since  and . Hence . 

For the converse, let . Then the derivation of w in  will be of the form 

 i.e. the first step in the derivation must see the rule . Again, 

since  and are disjoint and  and , some string x will be generated 

from  using productions in  ( which are also in ) and such that . 

Thus  

Hence  and . 

This means that w can be divided into two parts x, y such that  and . 

Thus .This completes the proof. 

Theorem : If L is a CFL, then so is . 

Proof : Let  be the CFG generating L. Let us construct the 

CFG  from G where . 

We now prove that , which prove the theorem. 

 can generate  in one step by using the production  since ,  can generate 

any string in L. Let  for any n >1 we can write  where 

 for . w can be generated by  using following steps. 

 



First (n-1)-steps uses the production S SS producing the sentential form of n numbers 

of S 's. The nonterminal S in the i-th position then generates  using production in P ( which 

are also in ) 

It is also easy to see that G can generate the empty string, any string in L and any 

string  for n >1 and none other. 

Hence  

Theorem : CFLs are not closed under intersection 

Proof : We prove it by giving a counter example. Consider the 

language  .The following CFG generates L1 and hence a CFL 

 

The nonterminal X generates strings of the form  and C generates strings of the 

form , . These are the only types of strings generated by X and C. 

Hence, S generates . 

  

Using similar reasoning, it can be shown that the following grammar 

 and hence it is also a CFL. 

 

But,  and is already shown to be not context-free. 

Hence proof. 

 

Theorem : A CFL's are not closed under complementations 

Proof : Assume, for contradiction, that CFL's are closed under complementation. SInce, 

CFL's are also closed under union, the language , where  and  are CFL's must be 

CFL. But by DeMorgan's law 



 

This contradicts the already proved fact that CFL's are not closed under intersection. 

But it can be shown that the CFL's are closed under intersection with a regular set. 

Theorem : If L is a CFL and R is a regular language, then  is a CFL. 

Proof : Let  be a PDA for L and let  be a 

DFA for R. 

We construct a PDA M from P and D as follows 

 

where  is defined as 

 contains  iff 

 and  contains  

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff 

both P and D accepts. That means, we want to show that 

 

We apply induction on n, the number of moves, to show that 

 iff 

 and  

Basic Case is n=0. Hence ,  and . For this case it is trivially true 

  

Inductive hypothesis : Assume that the statement is true for n -1. 

Inductive Step : Let w = xa and 

Let  



By inductive hypothesis,  and  

From the definition of  and considering the n-th move of the PDA M above, we have 

 and  

Hence  and  

 

Inductive hypothesis: Assume that the statement is true for n -1. 

Inductive Step: Let w = xa and 

Let  

By inductive hypothesis,  and  

From the definition of  and considering the n-th move of the PDA M above, we have 

 and  

Hence  and  

If  and , then  and we got that if M accepts w, then 

both P and D accepts it. 

We can show that converse, in a similar way. Hence  is a CFL ( since it is accepted by 

a PDA M ) 

This property is useful in showing that certain languages are not context-free. 

  

Example: Consider the language 

  

Intersecting L with the regular set , we get 



 

Which is already known to be not context-free. Hence L is not context-free. 

Theorem : CFL's are closed under reversal. That is if L is a CFL, then so is  

Proof : Let the CFG  generates L. We construct a CFG 

 where 

. We now show that , thus proving the theorem. 

We need to prove that 

 iff . 

The proof is by induction on n, the number of steps taken by the derivation. We assume, for 

simplicity (and of course without loss of generality), that G and hence  are in CNF. 

The basis is n=1 in which case it is trivial. Because must be either  or BC 

with . 

Hence  iff  and 

Assume that it is true for (n-1)-steps. Let . Then the first step must apply a rule of the 

form  and it gives 

 where  and  

By constructing of G',  

Hence 

 

The converse case is exactly similar. 

Substitution : 



, let  be a language (over any alphabet). This defines a function S, called 

substitution, on  which is denoted as - for all  

This definition of substitution can be extended further to apply strings and langauge as well. 

If , where , is a string in , then 

. 

Similarly, for any language L, 

 

The following theorem shows that CFLs are closed under substitution. 

Thereom: Let  is a CFL, and s is a substitution on  such that  is a CFL for 

all , thus s(L) is a CFL 

Proof: Let L = L(G) for a CFG  and for every ,  for 

some . Without loss of generality, assume that the sets of non 

terminals N and 's are disjoint. 

Now, we construct a grammar , generating s(L), from G and 's as follows : 

•  

•  

•  
•  consists of 

o  and 

o The production of P but with each terminal a in the right hand side of a 

production replaced by  everywhere. 

We now want to prove that this construction works i.e.  iff . 

If Part : Let  then according to the definition there is some string 

 and  for  such that  



We will show that . 

 From the construction of , we find that, there is a derivation 

 corresponding to the string  (since  contains all productions of G but every ai 

replaced with  in the RHS of any production). 

Every  is the start symbol of  and all productions of  are also included in . 

Hence 

 

Therefore, . 

(Only-if Part) Let . Then there must be a derivative as follows : 

 (using the production of G include in  as modified by (step 2) of the 

construction of .) 

Each ( ) can only generate a string , since each 's and N are 

disjoin. Therefore, we get 

 

 since  

 since  

 

 



The string  is formed by substituting strings  for each  and 

hence . 

Theorem : CFL's are closed under homomorphism 

Proof : Let  be a CFL, and h is a homomorphism on  i.e  for some 

alphabets . Consider the following substitution S: Replace each symbol  by the 

language consisting of the only string h(a), i.e.  for all . Then, it is clear 

that, h(L) = s(L). Hence, CFL's being closed under substitution must also be closed under 

homomorphism. 

 

CHECK YOUR PROGRESS  

True/False type questions  

1)Pumping Lemma can be used in the same way to show that certain languages are context-

free._____________ 

2) A CFL's are not closed under complementation__________________ 

3) There are algorithms to test emptiness of a CFL.________________ 

4) CFLs are  closed under intersection_______________ 

5) CYK Algorithm to decide membership in CFL____________ 

Answers- 

1)  False 

2) True 

3) True 

4) False 

5) True 

 

8.4 SOME DECISION ALGORITHMS FOR CFLs 

In this section, we examine some questions about CFLs we can answer. A CFL may be 

represented using a CFG or PDA. But an algorithm that uses one representation can be made 

to work for the others, since we can construct one from the other. 

 

8.4.1 TESTING EMPTINESS: 

Theorem: There are algorithms to test emptiness of a CFL. 



Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the 

construction described in the context of elimination of useless symbols, whether the start 

symbol is useless. If so, then ; otherwise not. 

 

8.4.2 TESTING MEMBERSHIP: 

Given a CFL L and a string x, the membership, problem is to determine whether ? 

Given a PDA P for L, simulating the PDA on input string x does not quite work, because the 

PDA can grow its stack indefinitely on  input, and the process may never terminate, even if 

the PDA is deterministic. 

So, we assume that a CFG  is given such that L = L(G). 

Let us first present a simple but in-efficient algorithm. 

Convert G to  in CNF generating . If the input string , 

then we need to determine whether  and it can easily be done using the technique 

given in the context of elimination of -production. If ,  then  iff . 

Consider a derivation under a grammar in CNF. At every step, a production in CNF in used, 

and hence it adds exactly one terminal symbol to the sentential form. Hence, if the length of 

the input string x is n, then it takes exactly n steps to derive x ( provided x is in ). 

Let the maximum number of productions for any non terminal in  is K. So at every step in 

derivation, there are atmost k choices. We may try out all these choices, systematically., to 

derive the string x in . Since there are atmost  i.e. choices. This algorithms is of 

exponential time complexity. We now present an efficient (polynomial time) membership 

algorithm. 

 

8.4.3 CYK ALGORITHM TO DECIDE MEMBERSHIP IN CFL 

We now present a cubic-time algorithm due to cocke, Younger and Kasami. It uses the 

dynamic programming technique-solves smaller sub-problems first and then builds up 

solution by combining smaller sub-solutions. It determines for each substring y of the given 

string x the set of all nonterminals that generate y. This is done inductively on the length of y. 



Let  be the given CFG in CNF. Consider the given string x and let . 

Let  be the substring of x that begins at position i ( i.e. i-th symbol of x ) and has length j. 

Let be the set of all nonterminals A such that . 

We write  . Where each  is a terminal symbol. 

 iff . Thus we construct the sets for all . 

Combining substrings of length 2, it is clear that,  i.e.  iff there is a 

production  in G and  and . 

That is  iff  and  and  

Thus we can construct the sets  from the already constructed sets , by inspecting the 

grammar. 

In general considering substrings  of length j,  i.e.  iff there is a 

production  in G such that  and  for some . 

That is  iff and  for some  such that . The 

idea is to divide,  into smaller substrings, using all possible ways (i.e. for different values 

of k), and construct  from already constructed sets for smaller substrings (i.e. 

 and ) by inspecting the grammar. 

These sets for longer substrings of x are constructed inductively until the set  for the 

string  is constructed. 

It is clear from the construction that  iff  

Hence, we can determine whether by inspecting . 

The CYK algorithm is presented next. 

 

CYK-Algorithm 

Input: A CFG  and a string  

Initialize:  

for j : = 2 to n do /* Determine  for all i */ 



for i := 1 to n-j+1 do /* No sense in considering i, j with  for all i */ 

 

for k := 1 to j-1 do /* try substrings of  of length k */ 

 
• The correctness of the algorithm can be proved by applying induction on j that 

whenever the outer loop finishes for particular j, the set  contains all non-terminals 

A that can derive ( for all i). 

• It is easy to conclude that the time complexity of this algorithm is 

 where  and grammar G is "fixed" in the sense that the size of the grammar is 

not considered as input in measuring complexity. 

• Example : Consider the CFG: 

S  AB | AC 

A  BC | a 

B  CB | b 

C  AA | b 

Let us decide the membership for the string x = baaaab using the CYK algorithm. 

The table for 's is shown below. 

Word: b a a a a b 

  

  

• Cell i, j will contain Nij 

• The top row is filled in by the first step of the algorithm e.g. , 

because  is a production. We can compute the contents of the second 

row by using the contents of the first row (already done) and inspecting the grammar. 

For example, to compute  (i.e. the set of non-terminals that derive ) we 

notice that  if  or if  or  is a production since no 

such production exists, we have . 

Similarly since  is a production and ,  we put . 



• Now, consider the first element of the third row,  (corresponding to the string

). There are two ways to break up ,  and  

• Consider . Since ,  and  is a production, we 

put . (If we consider, the other way i.e.  we find that  and 

hence no more symbols can be added to ). 

• Continuing this way we fill up the whole table as given below 

  

Figure 

x = x16 = baaaab 

Since                         

Hence baaaab is a member of the language generated by the grammar. 

 

8.5 TESTING FINITENESS OF A CFL 

We now show that there exist algorithms to decide finiteness of a CFL. Let L be a CFL. Then 

there is some pumping lemma constant n for L. The following algorithm derives the 

finiteness of L. 

 

8.5.1 DECISION ALGORITHM FOR TESTING FINITENESS OF A CFL: 

1. Test all input strings begining with those of length n (in non-decreasing order of length) 

for membership. (we already have developed algorithm for testing membership). 

• If there is a string x with length  such that , then L is infinite 

otherwise L is finite. 

Proof: If  and , then x can be pumped according to the pumping lemma and the 

language is infinite. We need to test strings of length less than 2n only . Because if there were 

a string of length 2n or longer, we can always find a shorter string , (by 



pumping lemma), but it is atmost n shorter. Thus if there are any strings of length 2n or more 

we can repeatedly cut out the substring vx to get, eventually, a string whose length is in the 

range n to 2n-1. 

 

8.6 CONCLUSION 

This module explains about the basic understanding of Context Free Languages (CFLs). It 

discusses Closure Property of Context Free Languages (CFLs), Some Decision Algorithms 

for CFLs and Testing Finiteness of a CFL through various theorems, lemmas and step-wise 

elaborated solved examples. 

 

8.7 CHECK YOUR PROGRESS 

Fill in the blanks: 

1) Pumping Lemma can be used in the same way to show that certain languages 

are_________________  

2) CYK Algorithm____________ membership in CFL 

3) If L is a CFL and R is a regular language, then ___________________________ is a CFL. 

4) A CFL's are not closed under________________  

5) CFL's are closed under ______________ 

 

8.8 ANSWER CHECK YOUR PROGRESS 

1)  not context-free 

2) To decide 

3) L intersection R 

4) Complementation 

5) Reversal. 

 

8.9 MODEL QUESTION 

Qs-1) What is Pumping Lemma why it is used? 

Qs-2) Context Free Languages (CFLs) are not closed under intersection explain with the help 

of example? 

Qs-3) How to test Finiteness of Context Free Languages (CFL)? 

Qs-4) Explain CYK Algorithm? 



Qs-5) What is Context Free Languages (CFL)? How to test Emptiness of Context Free 

Languages (CFL)? 
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UNIT-IX TURING MACHINES 
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9.11 Answer Check your progress 

9.12 Model Question 

9.13 References 

9.14 Suggested readings  

  



9.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of Turing Machines (TMs). It explains Informal 

Description and Formal Definition of Turing Machines. The chapter discusses Transition 

Function, Instantaneous Description (IDs) or Configurations of a TM, Moves of Turing 

Machines, Special Boundary Cases and some more concepts about Configuration and 

Acceptance through proper elaborations. 

 

9.2 INFORMAL DESCRIPTION 

We consider here a basic model of TM which is deterministic and have one-tape. There are 

many variations, all are equally powerful. 

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell 

but is infinite to the right and a tape head that can move left and right over the tape, reading 

and writing symbols. 

For any input w with |w|=n, initially it is written on the n leftmost (contiguous) tape cells. 

The infinitely many cells to the right of the input all contain a blank symbol, B which is a 

special tape symbol that is not an input symbol. The machine starts in its start state with its 

head scanning the leftmost symbol of the input w. Depending upon the symbol scanned by 

the tape head and the current state the machine makes a move which consists of the 

following: 

• writes a new symbol on that tape cell, 

• moves its head one cell either to the left or to the right and 

• (possibly) enters a new state. 

The action it takes in each step is determined by a transition function. The machine continues 

computing (i.e., making moves) until 

• it decides to "accept" its input by entering a special state called accept or final state or 

• halts without accepting i.e., rejecting the input when there is no move defined. 

On some inputs the TM many keep on computing forever without ever accepting or rejecting 

the input, in which case it is said to "loop" on that input. 

 

9.3 FORMAL DEFINITION 

Formally, a Deterministic Turing machine (DTM) is a 7-tuple . 

Where, 

• Q is a finite nonempty set of states. 

•  is a finite non-empty set of tape symbols, called the tape alphabet of M. 



•  is a finite non-empty set of input symbols, called the input alphabet of M. 

•  is the transition function of M, 

•  is the initial or start state. 

•  is the blank symbol 

•  is the set of final state. 

So, given the current state and tape symbol being read, the transition function describes the 

next state, symbol to be written on the tape, and the direction in which to move the tape head 

(L and R denote left and right, respectively). 

 

9.4 TRANSITION FUNCTION ( ) 

• The heart of the TM is the transition function,  because it tells us how the machine 

gets one step to the next. 

• when the machine is in a certain state q Q and the head is currently scanning the tape 

symbol , and if , then the machine 

1. replaces the symbol X by Y on the tape 

2. goes to state p, and 

3. the tape head moves one cell (i.e., one tape symbol) to the left (or right) 

if D is L (or R). 

 

9.5 INSTANTANEOUS DESCRIPTION (IDs) OR 

CONFIGURATIONS OF A TM 

The ID (instantaneous description) of a TM capture what is going out at any moment i.e., it 

contains all the information to exactly capture the "current state of the computations". 

It contains the following: 

• The current state, q 

• The position of the tape head, 

• The constants of the tape up to the rightmost nonblank symbol or the symbol to the 

left of the head, whichever is rightmost. 

Note that, although there is no limit on how far right the head may move and write nonblank 

symbols on the tape, at any finite time, the TM has visited only a finite prefix of the infinite 

tape. 

An ID (or configuration) of a TM M is denoted by  where  and 



• is the tape contents to the left of the head. 

• q is the current state. 

•  is the tape contents at or to the right of the tape head. 

 

That is, the tape head is currently scanning the leftmost tape symbol of . (Note that 

if , then the tape head is scanning a blank symbol) 

If  is the start state and w is the input to a TM M then the starting or initial configuration 

of M is obviously denoted by . 

  

9.6 MOVES OF TURING MACHINES 

To indicate one move we use the symbol . Similarly, zero, one, or more moves will be 

represented by . A move of a TM M is defined as follows. 

• Let  be an ID of M where ,  and . 

• Let there exists a transition  of M. 

Then we write  meaning that ID  yields  

• Alternatively, if  is a transition of M, then we write 

 which means that the ID  yields . 

• In other words, when two IDs are related by the relation  , we say that the first one 

yields the second (or the second is the result of the first) by one move. 

• If IDj results from IDi by zero, one or more (finite) moves then we write  (If the 

TM M is understand, then the subscript M can be dropped from  or ). 

 

9.7 SPECIAL BOUNDARY CASES 

• Let  be an ID and be a transition of M. Then  . That is, the 

head is not allowed to fall off the left end of the tape. 

• Let  be an ID and  then figure (Note that is equivalent 

to ) 

• Let  be an ID and  then figure 

• Let  be an ID and  then figure 



  

The language accepted by a TM , denoted as L(M) is 

L(M) = {w |  and figure for some p F and } 

In other words, the TM M accepts a string that cause M to enter a final or accepting 

state when started in its initial ID (i.e., ). That is a TM M accepts the string if a 

sequence of IDs,  exists such that 

•  is the initial or starting ID of M 

•  ;  

• The representation of IDk contains an accepting state. 

The set of strings that M accepts is the language of M, denoted L(M), as defined above. 

 

 



CHECK YOUR PROGRESS  

 

True/False type questions  

1)  The basic model of TM has a finite set of states____________ 

2) Formally, a Deterministic Turing machine (DTM) is a 7-tuple  _____________ 

3)  The heart of the TM is the transition function_______________ 

4) A deterministic TM is an 5-tuple_______________ 

5) Turing Machine is accepted by Push down automata_______________ 

 

Answers- 

1) True 

2) True  

3) True 

4) False 

5) False 

 

 

9.8 MORE ABOUT CONFIGURATION AND ACCEPTANCE 

• An ID  of M is called an accepting (or final) ID if  

• An ID  is called a blocking (or halting) ID if  is undefined i.e. the TM 

has no move at this point. 

•  is called reactable from  if  

•  is the initial (or starting) ID if  is the input to the TM and  is the 

initial (or start) state of M. 

On any input string  

either 

• M halts on w if there exists a blocking (configuration) ID,  such that . 



There are two cases to be considered 

• M accepts w if I is an accepting ID. The set of all  accepted by M is denoted 

as L(M) as already defined 

• M rejects w if is a blocking configuration. Denote by reject (M), the set of 

all  rejected by M. 

or 

• M loops on w if it does not halt on w. 

Let loop(M) be the set of all  on which M loops for. 

It is quite clear that 

 

That is, we assume that a TM M halts 

• When it enters an accepting  or 

• When it enters a blocking  i.e., when there is no next move. 

However, on some input string, , it is possible that the TM M loops for ever i.e., it 

never halts. 

It is observed that in the basic TM model there is no apparent way for the machine to "reject" 

the input string. And, instead of a single accepting state there is a set of accepting states. 

Considering these two facts, we define a new model which is equivalent (can be shown) to 

the basic TM model as follows: 

A deterministic TM is an 8-tuple 

  

where, 

 is the accepting state 

 is the rejecting state 

No transition are possible from  and . All other elements of M remain same as defined in 

case of basic model. 

The language accepted by the M is defined as 

L(M) = {  and  for some  } 



The TM M rejects a string  iff 

•  for some  or 

• M enters in an infinite loop on input w i.e., M never halts on w. 

• M enters in a blocking ID on input w i.e., M never halts on w. or 

• M enters in a blocking ID on input w i.e.,  and  is undefined. 

If M accepts w, we can determine it, because M eventually enters the accepting state . But 

if M does not accept w, we may not be able to determine this since M may reject w by not 

halting. 

This leads us to categorize the language accepted by the TMs into two broad classes as 

follows (Described in Next Module). 

 

9.9 CONCLUSION 

This module explains about the basic understanding of Turing Machines (TMs). It explains 

Informal Description and Formal Definition of Turing Machines. The module also discusses 

Transition Function, Instantaneous Description (IDs) or Configurations of a TM, Moves of 

Turing Machines, Special Boundary Cases and some important concepts about Configuration 

and Acceptance with proper elaborations. 

 

9.10 CHECK YOUR PROGRESS 

Fill in the Blanks: 

1) The basic model of TM has a _____________ set of states. 

2)  TM many keep on computing forever without ever accepting or rejecting the________  

3)  A deterministic TM is an__________ 8-tuple 

4) The language accepted by Turing Machine is_______________ 

5) The heart of the TM is the_____________  

 

9.11 ANSWER CHECK YOUR PROGRESS 

Answers: 



1) Finite 

2) Input 

3) 8 Tuple 

4) Recursive Language 

5) Transition function 

 

9.12 MODEL QUESTION 

Qs-1) What is basis model of Turing machine. Explain with the helpnof example? 

Qs-2) What is Transition function explain in detail? 

Qs-3) What is instantaneous description or configurations of Turing machine? 

Qs-4) What are Special boundary cases of Turing Machine? 

Qs-5) What are moves of Turing Machine explain your answer? 
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10.1 LEARNING OBJECTIVES 

This chapter gives the basic understanding of Recursive language, Recursively Enumerable 

(R.E) Language. Recursive (Or Decidable) Languages, Closure Properties, Post 

Correspondence Problem and Proof Sketch of Un-decidability through various concepts and 

step-wise elaborated solved examples. 

 

10.2 RECURSIVE LANGUAGE 

In mathematics, logic and computer science, a formal language (a set of finite sequences 

of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set 

of all possible finite sequences over the alphabet of the language. Equivalently, a formal 

language is recursive if there exists a total Turing machine (a Turing machine that halts for 

every given input) that, when given a finite sequence of symbols from the alphabet of the 

language as input (any string containing only characters in the language's alphabet) accepts 

only those that are part of the language and rejects all other strings. Recursive languages are 

also called decidable.  

The concept of decidability may be extended to other models of computation. For 

example, one may speak of languages decidable on a non-deterministic Turing machine. 

Therefore, whenever an ambiguity is possible, the synonym for "recursive language" used 

is Turing-decidable language, rather than simply decidable.  

The class of all recursive languages is often called R, although this name is also used 

for the class RP. This type of language was not defined in the Chomsky hierarchy. All 

recursive languages are also recursively enumerable. All regular, context-free and context-

sensitive languages are recursive. There exist three equivalent major definitions for the 

concept of a recursively enumerable language. 

1. A recursively enumerable language is a recursively enumerable subset in the set of all 

possible worlds over the alphabet of the language. 

2. A recursively enumerable language is a formal language for which there exists a Turing 

machine (or other computable function) which will enumerate all valid strings of the 

language. Note that if the language is infinite, the enumerating algorithm provided can be 

chosen so that it avoids repetitions, since we can test whether the string produced for 

number n is "already" produced for a number which is less than n. If it already is 

produced, use the output for input n+1 instead (recursively), but again, test whether it is 

"new". 

3. A recursively enumerable language is a formal language for which there exists a Turing 

machine (or other computable function) that will halt and accept when presented with 

any string in the language as input but may either halt and reject or loop forever when 

presented with a string not in the language. Contrast this to recursive languages, which 

require that the Turing machine halts in all cases. 
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All regular, context-free, context-sensitive and recursive languages are recursively 

enumerable. Post's theorem shows that RE, together with its complement co-RE, correspond 

to the first level of the arithmetical hierarchy. 

10.2.1 Recursively Enumerable (R.E.) Language: 

It is also called as TM-recognizable language or semi-decidable language. Simply speaking, a 

language L is recursively enumerable if some Turing Machine accepts it. Formally, the class 

of r.e. languages is defined as 

{ L |  and  TM M such that L = L(M) } 

• So, on input string , M enters an accepting ID and halts. 

• But , on input strings , M either halts entering a bloueing ID (i.e. without entering 

an accepting ID), or it never halts (i.e. it loops for ever). 

10.2.2 Recursive (or decidable) Languages 

A language L is recursive if there is some TM M that halts on every input  and 

L= L(M). 

Formally, the class of recursive language is defined as 

{ L |  and  TM M such that M halts  and L = L(M) } 

• So, on any input strings w L, M enters an accepting ID and halts and 

• On an input string w L, M halts entering in a blocking ID (or entering in a reject state). 

10.2.3 Example 

The Halting problem is recursively enumerable but not recursive. Indeed, one can run the 

Turing Machine and accept if the machine halts, hence it is r.e. On the other hand, the 

problem is undecidable. 

Some other RE, languages are: 

• Post correspondence problem 

• Mortality (computability theory) 

• Entscheidungs problem 

10.3 CLOSURE PROPERTIES 

Recursively enumerable languages are closed under the following operations. That is, 

if L and P are two recursively enumerable languages, then the following languages are 

recursively enumerable as well:  
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•   The Kleene star of L 

•   The concatenation of L and P 

•   The union  

•   The intersection 

Note that recursively enumerable languages are not closed under set difference or 

complementation. The set difference L - P may or may not be recursively enumerable. If L is 

recursively enumerable, then the complement of L is recursively enumerable if and only 

if L is also recursive. 

 

10.4 POST CORRESPONDENCE PROBLEM 

The Post correspondence problem is an undecidable decision problem that was introduced 

by Emil Post in 1946. Because it is simpler than the halting problem and the Entscheidungs 

problem it is often used in proofs of undecidability. 

Definition of the problem: 
The input of the problem consists of two finite lists and {\displaystyle \beta _{1},\ldots ,\beta 

_{N}} of words over some alphabet having at least two symbols. A solution to this problem 

is a sequence of indices {\displaystyle (i_{k})_{1\leq k\leq K}}with and {\displaystyle 1\leq 

i_{k}\leq N} for all, such that the decision problem then is to decide whether such a solution 

exists or not. 

Example instances of the problem 

Example 1 

Consider the following two lists:   

α1 α2 α3 

a ab bba 

β1 β2 β3 

baa aa bb 
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 A solution to this problem would be the sequence (3, 2, 3, 1), because 

Furthermore, since (3, 2, 3, 1) is a solution, so are all of its "repetitions", such as (3, 2, 3, 1, 3, 

2, 3, 1), etc.; that is, when a solution exists, there are infinitely many solutions of this 

repetitive kind. 

However, if the two lists had consisted of only {\displaystyle \alpha _{2},\alpha _{3}}

 and {\displaystyle \beta _{2},\beta _{3}}  from those sets, then there would have been 

no solution (the last letter of any such α string is not the same as the letter before it, whereas β 

only constructs pairs of the same letter). 

A convenient way to view an instance of a Post correspondence problem is as a collection of 

blocks of the form 

αi 

βi 

 

there being an unlimited supply of each type of block. Thus the above example is viewed as 

a 

baa 

i = 1 

ab 

aa 

i = 2 

bba 

bb 

i = 3 

where the solver has an endless supply of each of these three block types. A solution 

corresponds to some way of laying blocks next to each other so that the string in the top cells 

corresponds to the string in the bottom cells. Then the solution to the above example 

corresponds to: 

bba 

bb 

i1 = 3 

ab 

aa 

i2 = 2 

bba 

bb 

i3 = 3 

A 

Baa 

i4 = 1 

Example 2 

Again using blocks to represent an instance of the problem, the following is an example that 

has infinitely many solutions in addition to the kind obtained by merely "repeating" a 

solution. 

bb ab c 
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b 

1 

ba 

2 

bc 

3 

In this instance, every sequence of the form (1, 2, 2, . . ., 2, 3) is a solution (in addition to all 

their repetitions): 

bb 

b 

1 

ab 

ba 

2 

ab 

ba 

2 

Ab 

Ba 

2 

c 

bc 

3 
 

CHECK YOUR PROGRESS  

True/False type questions  

1) A formal language is recursive if there exists a total Turing machine____________ 

 

2) Recursively enumerable languages are closed under intersection _________________ 

   

3) The Halting problem is recursively enumerable but not recursive__________________ 

 

4) The Post correspondence problem is an decidable decision ____________________ 

 

5) Recursively enumerable languages are not closed under union____________________ 

 

Answers- 

1) True  

2) True 

3) True 

4) False 

5) False 

 

10.5 PROOF SKETCH OF UNDECIDABILITY 

The most common proof for the undecidability of PCP describes an instance of PCP that can 

simulate the computation of a Turing machine on a particular input. A match will only occur 

if the input would be accepted by the Turing machine. Because deciding if a Turing machine 

will accept an input is a basic undecidable problem, PCP cannot be decidable either. The 

following discussion is based on Michael Sipser's textbook Introduction to the Theory of 

Computation. 
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In more detail, the idea is that the string along the top and bottom will be a computation 

history of the Turing machine's computation. This means it will list a string describing the 

initial state, followed by a string describing the next state, and so on until it ends with a string 

describing an accepting state. The state strings are separated by some separator symbol 

(usually written #). According to the definition of a Turing machine, the full state of the 

machine consists of three parts: 

•   The current contents of the tape. 

•   The current state of the finite state machine which operates the tape head. 

•   The current position of the tape head on the tape. 

Although the tape has infinitely many cells, only some finite prefix of these will be non-

blank. We write these down as part of our state. To describe the state of the finite control, we 

create new symbols, labelled q1 through qk, for each of the finite state machine's k states. We 

insert the correct symbol into the string describing the tape's contents at the position of the 

tape head, thereby indicating both the tape head's position and the current state of the finite 

control. For the alphabet {0, 1}, a typical state might look something like: 

101101110q700110. 

A simple computation history would then look something like this: 

q0101#1q401#11q21#1q810. 

We start out with this block, where x is the input string and q0 is the start state: 

  

q0x# 

The top starts out "lagging" the bottom by one state, and keeps this lag until the very end 

stage. Next, for each symbol a in the tape alphabet, as well as #, we have a "copy" block, 

which copies it unmodified from one state to the next: 

a 

a 

We also have a block for each position transition the machine can make, showing how the 

tape head moves, how the finite state changes, and what happens to the surrounding symbols. 

For example, here the tape head is over a 0 in state 4, and then writes a 1 and moves right, 

changing to state 7: 

q40 
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1q7 

Finally, when the top reaches an accepting state, the bottom needs a chance to finally catch 

up to complete the match. To allow this, we extend the computation so that once an accepting 

state is reached, each subsequent machine step will cause a symbol near the tape head to 

vanish, one at a time, until none remain. If qf is an accepting state, we can represent this with 

the following transition blocks, where a is a tape alphabet symbol:  

qfa 

qf 

 

aqf 

qf 

 

 

There are a number of details to work out, such as dealing with boundaries between states, 

making sure that our initial tile goes first in the match, and so on, but this shows the general 

idea of how a static tile puzzle can simulate a Turing machine computation. 

The previous example 

q0101#1q401#11q21#1q810. 

is represented as the following solution to the Post correspondence problem: 

 

 

 

Source: https://en.formulasearchengine.com/wiki/Chomsky_hierarchy#/media/File:Chomsky-

hierarchy.svg 

10.6 CONCLUSION 



This module explains about the basic understanding of Recursive languages. It discusses 

Recursively Enumerable (R.E) Language. Recursive (Or Decidable) Languages, Closure 

Properties, Post Correspondence Problem and Proof Sketch of Undecidability through 

various concepts and step-wise elaborated solved examples. 

 

10.7 CHECK YOUR PROGRESS 

Fill in the blanks: 

 

1) Recursive languages are also called ______________ 

 

2) The Halting problem is recursively enumerable but not _______________ 

 

3) All regular, context-free, context-sensitive and recursive languages are________________ 

 

4) A formal language is recursive if there exists a total_________________   

 

5) The Post correspondence problem is an ______________________ 

 

10.8 ANSWER CHECK YOUR PROGRESS 

1) Decidable. 

2) Recursive 

3) Recursively enumerable. 

4) Turing machine 

5) Undecidable decision 

 

10.9 MODEL QUESTION 

Qs-1) Explain closure property for Recursive enumerable? 

 

Qs-2) What is post correspondence problem? 

 

Qs-3) Explain with the diagram Chomsky hierarchy? 

 

Qs-4) Explain Recursive enumerable language? 

 

Qs-5) What are three parts of full state of Turing machine? 
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Qs-6) Is the set of all definable subsets of the natural numbers recursively enumerable? 
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11.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of Post's Correspondence Problem (PCP). It 

explains Post's Correspondence System (PCS) through various theorems, corollaries, and 

lemmas along with step-wise elaborated solved examples. 

 

11.2 POST'S CORRESPONDENCE PROBLEM (PCP) 

Theorem 11.1.1: Given any two CFG's G1 and G2 the question "Is " is 

undecidable. 

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This 

would imply that PCP is decidable as shown below. 

For any Post Correspondence System, P construct grammars  and  by using the 

constructions elaborated already. We can now use the algorithm A to decide 

whether  and  Thus, PCP is decidable, a 

contradiction. So, such an algorithm does not exist. 

If  and  are CFG's constructed from any arbitrary Post Correspondence System, than it 

is not difficult to show that  and  are also context-free, even though the class of 

context-free languages are not closed under complementation. 

and their complements can be used in various ways to show that many other 

questions related to CFL's are undecidable. We prove here some of those. 

 

Theorem 11.1.2: Foe any two arbitrary CFG's  the following questions are 

undecidable. 

i. Is  

ii. Is  

iii. Is  

Proof: 

i. If  then,  



Hence, it suffice to show that the question “Is  " is undecidable. 

Since,  and  are CFl's and CFL's are closed under union,  is 

also context-free. By DeMorgan's theorem,  

If there is an algorithm to decide whether  we can use it to decide 

whether  or not. But this problem has already been proved to be 

undecidable. 

Hence there is no such algorithm to decide or not.  

Let P be any arbitrary Post correspondence system and  and  are CFg's constructed 

from the pairs of strings. 

must be a CFL and let G1generates L1. That is, 

 

by De Morgan's theorem, as shown already, any string,  represents a 

solution to the PCP. Hence,  contains all but those strings representing the solution to 

the PCP. 

Let  for same CFG G2. 

 

It is now obvious that  if and only if the PCP has no solutions, which is 

already proved to be undecidable. Hence, the question “Is ?" is undecidable. 

Let  be a CFG generating the language  and G2 be a CFG 

generating  where  and  are CFG.s constructed from same arbitrary 

instance of PCP. 

                 iff  

i.e. iff the PCP instance has no solutions as discussed in part (ii). 

Hence the proof. 



Theorem 11.1.3: It is undecidable whether an arbitrary CFG is ambiguous. 

Proof : Consider an arbitrary instance of PCP and construct the CFG's  and from the 

ordered pairs of strings. 

We construct a new grammar G from and as follows. 

          where 

          

 is same as that of  and . 

         

This construction gives a reduction of PCP to the -------- of whether a CFG is ambiguous, 

thus leading to the undecidability of the given problem. That is, we will now show that the 

PCP has a solution if and only if G is ambiguous. (where G is constructed from an arbitrary 

instance of PCP). 

Proof: Consider an arbitrary instance of PCP and construct the CFG's  and from the 

ordered pairs of strings. 

We construct a new grammar G from and as follows. 

          where 

          

 is same as that of  and . 

         

This construction gives a reduction of PCP to the -------- of whether a CFG is ambiguous, 

thus leading to the undecidability of the given problem. That is, we will now show that the 

PCP has a solution if and only if G is ambiguous. (where G is constructed from an arbitrary 

instance of PCP). 

Only if Assume that  is a solution sequence to this instance of PCP. 

Consider the following two derivation in . 



                        

                        

But, 

           

is a solution to the PCP. Hence the same string of terminals  has two derivations. 

Both these derivations are, clearly, leftmost. Hence G is ambiguous. 

If It is important to note that any string of terminals cannot have more than one derivation 

in  and  Because, every terminal string which are derivable under these grammars ends 

with a sequence of integers  This sequence uniquely determines which productions 

must be used at every step of the derivation. 

Hence, if a terminal string,  , has two leftmost derivations, then one of them must 

begin with the step. 

 and thus continues with derivation under , and the other must begin with the 

step  and then continues with derivations under . 

 

In both derivations the resulting string must end with a sequence  for same 

 The reverse of this sequence must be a solution to the PCP, because the string that precede in 

one case is  and  in the other case. Since the string derived in both 

cases are identical, the sequence  

must be a solution to the PCP. 

Hence the proof. 



 

In both derivations the resulting string must end with a sequence  for same 

 The reverse of this sequence must be a solution to the PCP, because the string that precede in 

one case is  and  in the other case. Since the string derived in both 

cases are identical, the sequence  

must be a solution to the PCP. 

Hence the proof. 

 

CHECK YOUR PROGRESS  

True/False type questions  

1)Any two CFG's G1 and G2 the question "Is " is 

undecidable._____________ 

2) It is undecidable whether an arbitrary CFG is ambiguous._________________ 

3) PCP over one-letter alphabet is undecidable.____________________ 

4) There is no algorithm that determines whether an arbitrary Post Correspondence System 

has a solution________________________ 

5) Some decidable problem in context-free languages_________________ 

Answers- 

1) True 

2) True 

3) False 

4) True 

5) False 

 

 

 

 



11.3 POST'S CORRESPONDENCE SYSTEM (PCS) 

A post correspondence system consists of a finite set of ordered pairs 

 where  for some alphabet .Any sequence of numbers is called a 

solution to a Post Correspondence System. 

The Post's Correspondence Problem is the problem of 

determining whether a Post Correspondence system has a solution. 

 

Example 1: Consider the post correspondence system 

                                 

The list 1,2,1,3 is a solution to it. 

Because 

   

             

 

I xi yi 

1 
 

 

2 
  

3 
  

 

    (A post correspondence system is also denoted as an instance of the PCP) 

Example 2: The following PCP instance has no solution 

I xi yi 

1 
 

 

2 
 

 

 

This can be proved as follows. cannot be chosen at the start, since than the LHS and 

RHS would differ in the first symbol ( in LHS and in RHS). So, we must start 



with . The next pair must be so that the 3 rd symbol in the RHS becomes 

identical to that of the LHS, which is a . After this step, LHS and RHS are not matching. 

If is selected next, then would be mismatched in the 7 th symbol ( in LHS and  in 

RHS). If is selected, instead, there will not be any choice to match the both side in the 

next step. 

Example 3: The list 1,3,2,3 is a solution to the following PCP instance. 

i xi yi 

1 1 101 

2 10 00 

3 011 11 

The following properties can easily be proved. 

Proposition:  The Post Correspondence System 

    has solutions if and only if 

               

Corollary: PCP over one-letter alphabet is decidable. 

Proposition : Any PCP instance over an alphabet  with  is equivalent to a PCP 

instance over an alphabet  with  

Proof : Let  

Consider  We can now encode every  as  any PCP instance 

over  will now have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance 

over  

Theorem 11.2.1: PCP is undecidable. That is, there is no algorithm that determines whether 

an arbitrary Post Correspondence System has a solution. 

Proof: The halting problem of turning machine can be reduced to PCP to show the 

undecidability of PCP. Since halting problem of TM is undecidable (already proved), This 

reduction shows that PCP is also undecidable. The proof is little bit lengthy and left as an 

exercise. 

Some undecidable problem in context-free languages 



We can use the undecidability of PCP to show that many problem concerning the context-free 

languages are undecidable. To prove this we reduce the PCP to each of these problem. The 

following discussion makes it clear how PCP can be used to serve this purpose. 

Let  be a Post Correspondence System over the alphabet  . 

We construct two CFG's Gx and Gy from the ordered pairs x,y respectively as follows. 

               and 

                where 

  

          

           

         

and  

it is clear that the grammar  generates the strings that can appear in the LHS of a sequence 

while solving the PCP followed by a sequence of numbers. The sequence of number at the 

end records the sequence of strings from the PCP instance (in reverse order) that generates 

the string. Similarly,  generates the strings that can be obtained from the RHS of a 

sequence and the corresponding sequence of numbers (in reverse order). 

Now, if the Post Correspondence System has a solution, then there must be a sequence 

                   

                   

According to the construction of  and  

                  

                   



In this case 

                  

Hence ,  and  implying 

                 

Conversely, let  

Hence, w must be in the form w1w2 where  and w2 in a sequence  (since, 

only that kind of strings can be generated by each of  and ). 

Now, the string  is a solution to the Post Correspondence System. 

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s 

whose intersection is nonempty. The following result is a direct conclusion of the above. 

 

11.4 CONCLUSION 

This module explains about the basic understanding of Post's Correspondence Problem 

(PCP). It discusses Post's Correspondence System (PCS) through various theorems, 

corollaries and lemmas along with step-wise elaborated solved examples. 

 

11.5 CHECK YOUR PROGRESS 

Fill in the blanks  

1) A post correspondence system consists of a ______________ set of ordered pairs. 

2) PCP over one-letter alphabet is ____________  

3) Given any two CFG's G1 and G2 the question "Is " 

is_________________ 

4) It is undecidable whether an arbitrary CFG is _____________ 

5) The full form of PCP is ______________________  

 



11.6 ANSWER CHECK YOUR PROGRESS 

1) Finite 

2) Decidable. 

3) Undecidable 

4) Ambiguous. 

5) Post correspondence problem. 

 

11.7 MODEL QUESTION 

Qs-1) Explain Post's Correspondence Problem (PCP) in brief? 

Qs-2) It is undecidable whether an arbitrary CFG is ambiguous. explain? 

Qs-3) PCP over one-letter alphabet is decidable. Explain? 

Qs-4) : For any two arbitrary CFG's  G1 and G2, what are three conditions that are 

undecidable? 

Qs-5) Explain the halting problem of turning machine can be reduced to PCP to show the 

undecidability. 
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12.1 LEARNING OBJECTIVES  

This chapter gives the basic understanding of Chomsky Hierarchy. It explains Equivalence of 

Unrestricted grammars, Turing Machines (TMs), Context-Sensitive Language and Linear-

bounded Automata (LBAs). It also discusses the Equivalence of LBAs and Context-sensitive 

Grammars through various theorems, lemmas and step-wise elaborated solved examples. 

 

12.2 CHOMSKY HIERARCHY 

 

The famous linguistic Noam Chomsky attempted to formalize the notion of grammar and 

languages in the 1950s. This effort, due to Chomsky, resulted in the definition of the 

"Chomsky Hierarchy", a hierarchy of language classes defined by gradually increasing the 

restrictions on the form of the productions. Chomsky numbered the four families of 

grammars (and languages) that make up the hierarchy and are defined as below. 

Let G = ( N , , P, S ) be a grammar 

1. G is called a Type-0 or unrestricted, or semi-there or phrase-structure grammar if all 

productions are of the form , where  and . 

2. G is a Type-1 or context-sensitive grammar if each production 

 in P satisfies  such that  and . Type-1 grammar , by 

special dispensation , is allowed to have the production , provided S does not 

appear on the right-hand side of any production. 

3. G is a Type-2 or context-free grammar if each production  in P satisfies 

 i.e. is a single nonterminal. 

4. G is a Type-3 or right-linear or regular grammar if each production has one of the 

following three forms: , A b, A  where A, C 

N ( with A = C allowed ) and . 

5. The language generated by a Type-i grammar is called a Type-i language, i = 0,1,2,3. A 

Type-i language is also called a context-sensitive language (CSL). We have already 

observed that a Type-2 language is also called a Context-Free Language (CFL) and a 

Type-3 language is also called a regular language. Each class of language in the Chomsky 

hierarchy is characterized as the language generated by a type of automata. These 

relationships have been summarised in the following table for convenience. 

6.   

Grammars Languages Automata 

Type-0 , phrase-struct , semi-true, 

unrestricted grammars 

Recursively 

enumerable 

language 

Turing Machine 

Type-0 , phrase-struct , semi-true, 

unrestricted grammars 

Context-sensitive 

language 

Linear-bounded automata 

Type-2, context-free grammars Context-free 

language 

Pushdown Automata 



Type-3, regular, right-linear, 

left-linear grammar 

Regular Language Finite Automata 

 

We have already shown 

• the equivalence of FAs (regular language) and type-3 or regular grammars, and 

• the equivalence of PDAs and CFGS. 

We now show the equivalence of 

• unrestricted grammars and TMs, and 

• context-sensitive grammars and LBAs.[ Note that we need to introduce the notion of 

LBAs first to do this] 

 

 

12.3 EQUIVALENCE OF UNRESTRICTED GRAMMARS AND 

TMs 

We want to show that a language L = L(M) for some TM M iff L = L(G) for some 

unrestricted grammar G. The following two theorems completes the proof. 

Theorem: Let G = ( N, , P, S ) be an unrestricted grammar. Then the language L(G) 

generated by G is recursively enumerable. 

Proof : To prove the theorem, we construct a 3-type nondeterministic TM M that 

accepts L(G). Tape 1 always holds any given input string w  . A production 

 of G is represented as  where # is a special tape symbol of M such that # . 

All the production of G with this representation are written on tape-2 of M. Two productions 

are separated by the string ##. The idea is that M's computation simulates derivations of G. 

Tape 3 is used to simulate the derivative of G. On many input string w, the computation 

of TM = M consists of the following steps: 

1. w is written on tape 1. 

2. S is written on the first cell of tape 3. 

3. A production  is chosen from tape 2 (we assume that all the productions 

of G are written on tape 2) 

4. M searches for an instance of the string on tape 3. If found , then it goes to next 

step; otherwise the computation halts and M rejects w. 

5. The string  on tape 3 is replaced by the string  (in the RHS of the 

production ). [ This step minimies one step in the derivation of w in G.] 

6. The string of tape 3 is compared with that on tape 1 (i.e. with the input w). If there is a 

match , the computation halts in an accepting state (i.e. M accpets w). 

7. Repeat step 3 through 7 , to apply other productions. 

Note : In step 5, if tape 3 contains  and is replaced by , then it says . 

Since and  may be of different length, the symbols of may have to be shifted to fit 

 between  and . 



Let . Then . This derivation will eventually be discovered by one of the 

nondeterministic computations of M by using the steps given above. Hence,  

 

Conversely, let w  L(G). Then there is an accepting computation of M for the string w. The 

actions of M on tape 3 are precisely the strings derivable from S and the only string accepted 

by M are terminal string in L(G). Hence  w L(G) giving L(M)=L(G). That is, M accepts 

exactly L(G) and hence L(G) is recursively enumerable. 

 

Theorem : Let L be a recursively enumerable language. Then L = L(G) for some unrestricted 

grammar G. 

Proof : Since L is r.e, it is ampled by a deterministic TM  we want 

to construct an unrestricted grammar  whose derivations simulates the 

computations of M, such that . That is, for any string 

 iff symbol for some  and . For this is to happen we need to represent IDs of 

TM M by strings of terminals & nonterminals in G and must have productions in such that 

S  q0w w. 

That is, 

1. The initial ID q0w must be derivable from S. 

2. Induction production in G to simulate every move of M. 

3. If M eventually enters a final state, then transform the string  to w. 

Since the string w gets modified during simulation (in step 2), the grammar G has to 

remember it, so that it can reproduced once M enters a final state. So, G is constructed such 

that it generates two copies of a representation of some string w  and then simulates the 

behaviour of the TM M on one copy, preserving the other. If M accepts, by entering a final 

state, then G transforms the second copy to a terminal string; otherwise G doesnot transform 

the second copy to a terminal string. 

Let  =  , for some k >=1 

Construction of G is given below. 

• N =  

• The production in P are 

1. S q0T 

2. T [ai , ai]T for all i =1, 2 , ... , k 

3. T R 

4. R  [ , B ] R 

5. R  

• For every move (q, X) = (P, Y, R) of the TM M, 

q[ a, X ]  [ a, Y ] p for all a  { } and all q Q and X , Y . 



• For every move ( q, X ) = ( P, Y, L ) of the TM M, 

[ b, Z ] q [ a, X ] p[ b, Z ] q [ a, Y ] for all a, b { }, all X , Y , Z  and q 

 Q 

• For all q F, all a { } and X  

1. [ a, X ] q qaq 

2. q [ a, X ] qaq. 

3. q  

We now see that a representation of the initial ID  of M for a string 

can be derived from S using the two rules 1 and 2 i.e. 

 

Assume that M accpets w and it doesnot use more than i calls (i>=0) to the right of w. Then 

using rule 3 once and rule 4 i-times, and finally rule 5 once, G derives the following string 

  (Using rule 3) 

 

 ( Using rule 4 i-times) 

      ( using rule 5 ) 

This is the representation of the string 

 
For any further derivation from this point, we can use only rules 6 and 7 until we encounter a 

final state. 

Let  be the representative of the string in G. Consider the ID in G. Consider the 

ID of M for . 

If (q, aj)=(P, X, R) is a move of M, then using rule b, we find that 

 

which is a correct representation of the next ID  and it remembers the symbol  in 

the first component of the nonterminal and modifies it to X in the second component. 

If on the other hand,  is move of M, then similarly, it is easy to see that 

using rule 7 we find a correct representation of the next ID  of M. 

Hence, at every step, using rule 6 and 7, the grammar G correctly simulates the computations 

of M. 

If , then M eventually enters a final state. At this point, the derivation in G can use 

rule 8 to reproduce the original string w from the first component of the representation of 



every nonterminal in the resulting string. All the q's can be erased by using q , as many 

times as required. Therefore S w and so w L(G). 

Conversely, if w L(G) there is a derivation of w in G. Proceeding in exactly in opposite 

direction as discussed above, we discover that for some , and 

. Hence , completing the proof. 

 

12.4 CONTEXT-SENSITIVE LANGUAGE AND LBAs 

We first introduce the notion of LBAs and then show the equivalence of CSLs and LBAs.  

• TM is the most general and powerful computational model developed so far. 

• It is interesting to observe that though a large number of variations of TMs exists, all are 

equivalent to the basic TM model in terms of power or capability i.e. all can accept r.e 

language only. This implies that it is not possible to increase the power of a TM by 

putting more features in terms of complex and /or additional structures to the basic model. 

• But by putting some kind of restrictions on the use of the structures of the TM, it is 

possible to limit the power. For example, 

o If only a finite amount of tape is allowed to use with read-only tape that can move 

only to right one call at a time, we get a FA accepting regular language. 

o If the tape is restricted to be used as stack, it will work like a nondeterministic 

pushdown automata. 

• Similarly, we get another interesting type of automata by restricting the number of tape 

cells that can be used. 

• This new automata, denoted "linear bounded automata" (or LBA), accepts a smaller class 

of languages than the class of r.e. languages. An LBA is exactly similar to a TM except 

that on any input w with |w| = n, it can use only (n+2) numbers of cells of the input 

tape.The input string is always put between a left-end marker, <, and a right-end marker, 

>, which are not puts of the input string. The read-write head cannot move to the left of 

the left-end marker or to the right of the right-end marker. The two end markers cannot be 

overwritten in any case. 

Formally, a LBA is a nondeterministic TM M = (Q, , , , q0, B, <, >, F) satisfying the 

following conditions: 

1. The input alphabet,  must contain two special symbols < and >, the left and right 

end markers, respectively which do not appear in any input string. 

2. (q, <) can contain only element of the form ( p, <, R ) and (q, >) can contain only 

elements of the form (p, >, L) for any q, p Q . 

[ Note: All other elements are identical to the corresponding elements of a TM ] 

The language accepted by M, denoted by L(M) is 

L(M) = {  and } for some and  } 

The blank symbol, B is not necessary to be considered as a part of M since it cannot move to 

the right of right - end marker. 

The reason behind using the name "linear bounded automation" is derived from the following 

fact: 



If on every input w with |w| = n, a TM is allowed to use only an amount of tape that 

is "bounded by some linear function" of n, then the computational power of this TM would 

be identical to the TM which is restricted to use the amount of tape containing n+2 cells (as 

given in the definition). 

Example : The language is accepted by some LBA. 

To show that L is accepted by an LBA. we need to construct a TM to accept L such that 

during computation on any input w, the read-write head moves neither beyond the right of the 

rightmost symbol of w nor beyond the left of the leftmost symbol of w. The outline of the 

TM M accepting L is given below. 

On initial state q0, M replaces the first a by X and change state to q1 and the head moves to 

the right looking for the first b, skipping all other symbols. 

This b is then replaced by Y and changes state to q2 and the head moves to the right 

searching for the first c   skipping all other symbols. This c is then replaced by Z and changes 

state to q3 and the head moves to the left searching for the first X, skipping all other symbols. 

On reading X in state q3 the head moves to the right (one cell) changing state to q0 again to 

repeat the same process i.e match each a, b and c and replace them by X, Y  and Z, 

respectively, with the same sequence of state changes. 

During this process, if it reads Y (instead of the symbol a) in state q0, then it implies that 

all a's have been replaced by X's and hence it needs to check that all b's and c's have also been 

replaced by Y's and Z's, respectively. 

This can be done by entering a state, say q4 and moving the head to right looking for any b's 

or c's left until the right end is discovered (by reading a blank symbol). If not found, the input 

is accepted; otherwise it is rejected. 

It is observed that at no point the read-write head moves past the extreme left and right 

symbols, except in the last step when it reads the first blank symbol to the right of w. 

This TM can be converted to a LBA by including the two end marks and keeping all the 

moves except the last one. In the last step when M reads a blank symbol, the LBA will read 

the right endmarker, > and hence a move of the form can be included, 

where , to save the same purpose. This LBA also accepts the same language L as that 

of M. 

 

 

 

 

 



CHECK YOUR PROGRESS  

True/False type questions  

1) Letters, digits, single characters are known as strings______________ 

2) LBA is accepted by Regular language________________ 

3) Type 3 is regular language______________ 

4) Smallest unit of a grammar that appears in production rules, cannot be further broken 

down is known as terminal._______________ 

5) Turing machine is most powerful language.____________________ 

 

Answers- 

1) True 

2) False 

3) True 

4) True 

5) True 

 

12.5 EQUIVALENCE OF LINEAR-BOUNDED AUTOMATA 

AND CONTEXT-SENSITIVE GRAMMARS 

we now show that LBA's and CSG's are equivalent in the sense that the LBA's accept exactly 

the CSLs except for the fact that an LBA can accept  while a CSG cannot generate , that 

is, L = L ( M ) for some CSG G. The result is shown by proving the following two theorems. 

Theorem : If L is a context-sensitive language, then L is accpeted by one LBA M. 

Proof : Since L is a CSL, L = L(G) for some CSG G =(N, , P, S). We now construct an 

LBA M with a two-track tape to simulate the derivatives of G. The first track holds the input 

string (including the end markers) while the second track holds the sentential form generated 

by the simulated derivation. On input <w> on its tape a computation of the LBA M consists 

of the following sequence of steps. 

1. The LBA writes the (start) symbol S of G on the second track below the leftmost 

symbol of w. 

2. If w =  the LBA halts without accepting. 

3. The LBA nondeterministically selects a production  and a position in the 

sentential form written on the second track. 

4. It follows next three steps 

1. if a substring on track 2 starting at the selected position doesnot match ,  the 

LBA halts in a rejecting state. 



2. If the substring on track 2 starting at the selected position is  but the string 

obtained by replacing  by  (i.e. applying the rule  ) has a length 

greater than |w| , then the LBA halts in rejecting state. 

3. otherwise, is replaced by  on track 2. 

5.  If track 2 contains the string w, then the LBA halts in an accepting state, otherwise, 

steps 3 through 5 are repeated. 

Thus, the LBA M will accpet a string w if . Conversely, a computation of the 

LBA M with input <w> that falls in an accepting state consists of a sequence of string 

transformations generated by steps 3 and 4. But these transformations define a deviation 

of w in G. Thus, the LBA M accepts w iff . 

Theorem : Let L be a language accepeted by an LBA M = . Then L-{

} is a context-sensitive language. 

Proof : We need to construct an equivalent CSG G that simulates the computation of the 

LBA M. Note that the techniques used to construct an equivalent unrestricted grammar that 

simulates the computations of a TM (as given in theorem ....) cannot be adopted directly. The 

reason is that if the CGS simulated the LBA using distinct symbols for the states and the 

endmarkers, then it could never erase these symbols later to produce the original input string 

since it would violate the noncontracting or monotonicity property of a CSG. Because use of 

a production in a derivation to erase a symbol in a sentential form would produce a starter 

sentential form. Hence the endmarkers must be incorporated into adjustment tape symbols 

and similarly the states must be incorporated into the symbols scanned by the tape head. The 

input alphabet of G is obtained from by removing the endmarkers. Nonterminals of G are 

ordered pairs-the first component is a terminal symbol and the second component is a string 

consisting of a combination of a tape symbol and (possibly) a state and endmarkers. The 

construction of the CSG G =  is as follows. 

 

N = { S, A, [a, X], [a,<X], [a, X>], [a, <X>], [a, qX], [a, q<X], [a, <qX], [a, qX>], [a, Xq > ], 

[a, Xq>], [a, qX>], [a, Xq>], [a, q<X>], [a, <qx>],[a, <Xq>] } 

for all  and  

The production in P are given below. 

1.  

2.  

Using these two rules we get 



S [a, q0<a>]     or 

 

The string that is obtained by concatenating the elements of the first component(s) of the 

ordered pairs (composite variable(s)) is  and represents the input string to the 

LBA M. Concatenating the second component we get the string  which is the 

initial configuration of the LBA M on the input string . 

Rules 3 and 4 given below are used to simulate the computations of the LBA M. 

3. For every move  of the LBA include 

 in P 

 and  

4. Similarly for every move of the LBA include 

 in P. 

5. whenever 

 is a move of the LBA. 

6.  whenever 

 is a move of the LBA 

The two rules 5 and 6 are used to handle the two special extreme cases as indicate in 

the definition of the lba. 

Hence every move of the LBA can be simulated by G using the above rules. It is clear 

that if the LBA ever enters a final state qf , then simulating this step the CSG G will 

produce a variable in the sentential form. At this point, the derivation must 

generate the original input string. 

Using the production 

7.  a,  and , (i.e.  and/or  could include <, > and onre 

tape symbol). 

The ordered pair  is transformed into the terminal symbol contained in the 

first component. 



Now the following rules allow deletion of the second component of an ordered pair 

(i.e. composite variable) if it is adjacent to a terminal symbol. 

8.  

9.  and all possible  

Once, all the second component s are deleted using the above two rules, the original input 

string is correctly generated. This is the correct derivation the LBA would accept the same 

string as it had entered one of the final states (implied by use of rule 7). 

It is also clear that the CSG G can generate a terminal string only if the LBA accepts it. 

Note that the production used here are all context-sensitive. Also, the second components 

donot produce the string . Thus the computation with the empty string as input is not 

simulated by the CSG. 

A proof that any string  is accepted by the LBA M iff it is generated by the 

grammar G is exactly similar to one that was produced in Theorems. 

• What are the different levels in the Chomsky hierarchy? 

 

Chomsky Hierarchy Levels. Source: Fitch. 2014.  

There are 4 levels – Type-3, Type-2, Type-1, Type-0. With every level, the grammar 

becomes less restrictive in rules, but more complicated to automate. Every level is also a 

subset of the subsequent level. 

o Type-3: Regular Grammar - most restrictive of the set, they generate regular languages. 

They must have a single non-terminal on the left-hand-side and a right-hand-side 

consisting of a single terminal or single terminal followed by a single non-terminal. 



o Type-2: Context-Free Grammar - generate context-free languages, a category of 

immense interest to NLP practitioners. Here all rules take the form A → β, where A is a 

single non-terminal symbol and β is a string of symbols. 

o Type-1: Context-Sensitive Grammar - the highest programmable level, they generate 

context-sensitive languages. They have rules of the form α A β → α γ β with A as a non-

terminal and α, β, γ as strings of terminals and non-terminals. Strings α, β may be empty, 

but γ must be nonempty. 

o Type-0: Recursively enumerable grammar - are too generic and unrestricted to describe 

the syntax of either programming or natural languages. 

 Any language is a structured medium of communication whether it is a spoken or written 

natural language, sign or coded language, or a formal programming language. Languages are 

characterised by two basic elements – syntax (grammatical rules) and semantics (meaning). 

In some languages, the meaning might vary depending upon a third factor called context of 

usage. 

Depending on restrictions and complexity present in the grammar, languages find a place in 

the hierarchy of formal languages. Noam Chomsky, celebrated American linguist cum 

cognitive scientist, defined this hierarchy in 1956 and hence it's called Chomsky Hierarchy. 

Although his concept is quite old, there's renewed interest because of its relevance to Natural 

Language Processing. Chomsky hierarchy helps us answer questions like “Can a natural 

language like English be described (‘parsed’, ‘compiled’) with the same methods as used for 

formal/artificial (programming) languages in computer science?” 

• What are the common terms and definitions used while studying Chomsky Hierarchy? 

o Symbol - Letters, digits, single characters. Example - A,b,3 

o String - Finite sequence of symbols. Example - Abcd, x12 

o Production Rules - Set of rules for every grammar describing how to form strings from 

the language that are syntactically valid. 

o Terminal - Smallest unit of a grammar that appears in production rules, cannot be further 

broken down. 

o Non-terminal - Symbols that can be replaced by other non-terminals or terminals by 

successive application of production rules. 

o Grammar - Rules for forming well-structured sentences and the words that make up those 

sentences in a language. A 4-tuple G = (V , T , P , S) such that V = Finite non-empty set 

of non-terminal symbols, T = Finite set of terminal symbols, P = Finite non-empty set of 

production rules, S = Start symbol 

o Language - Set of strings conforming to a grammar. Programming languages have finite 

strings; most natural languages are seemingly infinite. Example – Spanish, Python, 

Hexadecimal code. 

o Automaton - Programmable version of a grammar governed by pre-defined production 

rules. It has clearly set computing requirements of memory and processing. Example – 

Regular automaton for regex. 

 

• What are the important extensions to Chomsky hierarchy that find relevance in NLP? 



 
 

Mildly Context Sensitive Languages. Source: Jäger and Rogers. 2012. 

 

There are two extensions to the traditional Chomsky hierarchy that have proved useful in 

linguistics and cognitive science: 

• Mildly context-sensitive languages - CFGs are not adequate (weakly or strongly) to 

characterize some aspects of language structure. To derive extra power beyond CFG, a 

grammatical formalism called Tree Adjoining Grammars (TAG) was proposed as an 

approximate characterization of Mildly Context-Sensitive Grammars. It is a tree generating 

system that factors recursion and the domain of dependencies in a novel way leading to 

'localization' of dependencies, their long distance behaviour following from the operation of 

composition, called 'adjoining'. Another classification called Minimalist Grammars (MG) 

describes an even larger class of formal languages. 

• Sub-regular languages - A sub-regular language is a set of strings that can be 

described without employing the full power of finite state automata. Many aspects of human 

language are manifestly sub-regular, such as some ‘strictly local’ dependencies. Example – 

identifying recurring sub-string patterns within words is one such common application. 

 

12.6 CONCLUSION 

This module explains about the basic understanding of Chomsky Hierarchy. It explains 

Equivalence of Unrestricted grammars, Turing Machines (TMs), Context-Sensitive 

Language and Linear-bounded Automata (LBAs). It also discusses the Equivalence of LBAs 

and Context-sensitive Grammars through various theorems, lemmas and step-wise elaborated 

solved examples. 

 



12.7 CHECK YOUR PROGRESS 

1) Type 3 is ____________________grammer. 

2) Linear bound automata is accepted by___________________ 

3) Smallest unit of a grammar that appears in production rules,is known as_______________ 

4) Set of rules for every grammar describing how to form strings from the language that are 

syntactically valid is known as _________________ 

5)  Recursive enumerable grammer is accepted by__________________ 

 

12.8 ANSWER CHECK YOUR PROGRESS 

Fill in the blanks: 

1) Regular 

2) Context sensitive language 

3) Terminal 

4) Production rules 

5) Turing machine 

 

12.9 MODEL QUESTION 

Qs-1) What is grammer explain? What are its benefits? Expalin. 

Qs-2) Explain Chomsky Hierarchy with the help of diagram? 

Qs-3) What is sub-regular language? 

Qs-4) Explain type1 Grammer? 

Qs-5) What is midly context sensitive language? Explain. 
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