
Content

Block-I

UNIT-I

 INTODUCTION TO FORMAL LANGUAGES AND AUTOMATA

1.1 Learning Objectives

1.2 Alphabets Strings and Languages

 1.2. 1 Languages

 1.2.2 Symbols

 1.2.3 Alphabets

 1.2.4 Strings or Words over Alphabets

 1.2.5 Length of a string

 1.2.6 Convention

 1.2.7 Some String Operations

 1.2.8 Powers of Strings

 1.2.9 Powers of Alphabets

 1.2.10 Reversal

1.3 Language

 1.3.1 Set operations on languages

 1.3.2 Reversal of a language

 1.3.3 Language concatenation

 1.3.4 Iterated concatenation of languages

 1.3.5 Kleene's Star operation

1.4 Automata and Grammars

 1.4.1 Grammar

1.5 Check your progress

1.6 Answer Check your progress

1.7 Model Question

1.8 References

1.9 Suggested readings

 UNIT-II
 FINITE AUTOMATA

 2.1 Learning Objectives

2.2 Finite Automata

2.2.1 States, Transitions and Finite-State Transition System

2.2.2 Deterministic Finite (-state) Automata

2.3 Deterministic Finite State Automaton

2.3.1 Acceptance of Strings

2.3.2 Language Accepted or Recognized by a DFA

2.3.3 Extended transition function

2.3.4 Transition table

2.3.5 (State) Transition diagram

2.3.6 Removing Transition

2.3.7 Equivalence of NFA and DFA

2.4 Multiple Next State

2.4.1 - transitions

2.4.2 Acceptance

2.4.3 The Extended Transition function

2.5 Formal definition of NFA

2.5.1 The Language of an NFA

2.6 Check your progress

2.7 Answer Check your progress

2.8 Model Question

2.9 References

2.10 Suggested readings

UNIT-III

REGULAR EXPRESSIONS (RE)

3.1 Learning Objectives

3.2 Regular Expressions (RE)

3.3 Regular Expression and Regular Language

3.4 Regular Grammars

3.5 Some Decision Algorithms for CFLs

3.6 Check your progress

3.7 Answer Check your progress

3.8 Model Question

3.9 References

3.10 Suggested readings

UNIT-IV

MINIMIZATION OF DETERMINISTIC FINITE AUTOMATA (DFA)

4.1 Learning Objectives

4.2 Minimization of Deterministic Finite Automata (DFA)

4.3 DFA Isomorphisms

 4.3.1 Showing that and M are isomorphic

4.4 The minimal DFA

4.5 A Minimization Algorithm

4.6 Some decision properties of Regular Languages

4.7 Finite Automata with output

 4.7.1 Moore machines

 4.7.2 Mealy machines

4.8 Equivalence of Moore and Mealy machines

4.9 Check your progress

4.10 Answer Check your progress

4.11 Model Question

4.12 References

4.13 Suggested readings

Block-II

UNIT-V

PUSHDOWN AUTOMATA

5.1 Learning Objectives

5.2 Pushdown Automata

 5.2.1 Formal Definitions

 5.2.2 Explanation of the transition function,

5.3 Configuration or Instantaneous Description (ID)

5.4 Nondeterministic Finite Automata (NFA)

 5.4.1 Language accepted by a PDA

 5.4.2 Equivalence of PDAs and CFGs

5.5 CFA to PDA

5.6 Some Useful Explanations

 5.6.1 PDA and CFG

 5.6.2 PDA to CFG

 5.6.3 Inductive Hypothesis

 5.6.4 Inductive Step

5.7 Conclusion

5.8 Check your progress

5.9 Answer Check your progress

5.10 Model Question

5.12 References

5.13 Suggested readings

UNIT-VI

DETERMINISTIC PUSHDOWN AUTOMATA (PDA)

6.1 Learning Objectives

6.2 Deterministic Pushdown Automata (DPDA) and Deterministic Context-free

Languages (DCFLs)

6.3 DPDAs and FAs: DCFLs and Regular languages

6.4 CFLs and DCFLs

6.5 Standard forms of DPDAs

6.6 Acceptance by final state and empty stack

6.7 Unambiguous CFGs and DPDAs

6.8 Parsing and DPDAs

6.9 Conclusion

6.10 Check your progress

6.11 Answer Check your progress

6.12 Model Question

6.13 References

6.14 Suggested readings

UNIT-VII

 SIMPLIFICATION OF CFG

7.1 Learning Objectives

7.2 Chomsky Normal Form (CNF)

7.3 Greibach Normal Form (GNF)

7.4 Conclusion

7.5 Check your progress

7.6 Answer Check your progress

7.7 Model Question

7.8 References

7.9 Suggested readings

UNIT-VIII

CONTEXT FREE LANGUAGES

8.1 Learning Objectives

8.2 Pumping Lemma for Context Free Languages (CFLs)

8.3 Closure Property of Context Free Languages (CFLs)

8.4 Some Decision Algorithms for CFLs

 8.4.1 Testing Emptiness

 8.4.2 Testing Membership

 8.4.3 CYK Algorithm to decide membership in CFL

8.5 Testing Finiteness of a CFL

 8.5.1 Decision algorithm for testing finiteness of a CFL

8.6 Conclusion

8.7 Check your progress

8.8 Answer Check your progress

8.9 Model Question

8.10 References

8.11 Suggested readings

Block-III

UNIT-IX

TURING MACHINES

9.1 Learning Objectives

9.2 Informal Description

9.3 Formal Definition

9.4 Transition Function

9.5 Instantaneous Description (IDs) or Configurations of a TM

9.6 Moves of Turing Machines

9.7 Special Boundary Cases

9.8 More about Configuration and Acceptance

9.9 Conclusion

9.10 Check your progress

9.11 Answer Check your progress

9.12 Model Question

9.13 References

9.14 Suggested readings

UNIT-X

RECURSIVELY ENUMERABLE LANGUAGE

10.1 Learning Objectives

10.2 Recursive language

 10.2.1 Recursively Enumerable (R.E) Language

 10.2.2 Recursive (Or Decidable) Languages

 10.2.3 Examples

10.3 Closure Properties

10.4 Post Correspondence Problem

10.5 Proof Sketch of Undecidability

10.6 Conclusion

10.7 Check your progress

10.8 Answer Check your progress

10.9 Model Question

10.10 References

10.11 Suggested readings

UNIT-XI

POST'S CORRESPONDENCE PROBLEM

11.1 Learning Objectives

11.2 Post's Correspondence Problem (PCP)

11.3 Post's Correspondence System (PCS)

11.4 Conclusion

11.5 Check your progress

11.6 Answer Check your progress

11.7 Model Question

11.8 References

11.9 Suggested readings

UNIT-XII

CHOMSKY HIERARCHY

12.1 Learning Objectives

12.2 Chomsky Hierarchy

12.3 Equivalence of Unrestricted grammars and TMs

12.4 Context-Sensitive Language and LBAs

12.5 Equivalence of Linear-bounded Automata and Context-sensitive Grammars

12.6 Conclusion

12.7 Check your progress

12.8 Answer Check your progress

12.9 Model Question

12.10 References

12.11 Suggested readings

Title Formal Languages and Automata

Authors

Adaption and Typesetting Dr. Ashutosh Kumar Bhatt

Associate Professor

School of Computer Science and IT

Uttarakhand Open University

ISBN:

Acknowledgement

This textbook has been adapted from “ National Programme on Technology Enhanced

Learning (NPTEL)” available at https://nptel.ac.in/courses/106/103/106103070/

Published By: Uttarakhand Open University

https://nptel.ac.in/courses/106/103/106103070/

Block-I

UNIT-I INTODUCTION TO FORMAL LANGUAGES

AND AUTOMATA

1.1 Learning Objectives

1.2 Alphabets Strings and Languages

1.2.1 Languages

1.2.2 Symbols

1.2.3 Alphabets

1.2.4 Strings or Words over Alphabets

1.2.5 Length of a string

1.2.6 Convention

1.2.7 Some String Operations

1.2.8 Powers of Strings

1.2.9 Powers of Alphabets

1.2.10 Reversal

1.3 Language

1.3.1 Set operations on languages

1.3.2 Reversal of a language

1.3.3 Language concatenation

1.3.4 Iterated concatenation of languages

1.3.5 Kleene's Star operation

1.4 Automata and Grammars

1.4.1 Grammar

1.5 Check your progress

1.6 Answer Check your progress

1.7 Model Question

1.8 References

1.9 Suggested readings

1.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Alphabets Strings and Languages, languages

and automata and grammar. We also understand String operation, language concatenation

and Kleene's Star operation.

1.2 ALPHABETS, STRINGS AND LANGUAGES

1.2.1 LANGUAGES :

A general definition of language must cover a variety of distinct categories: natural

languages, programming languages, mathematical languages, etc. The notion of natural

languages like English, Hindi, etc. is familiar to us. Informally, language can be defined as a

system suitable for expression of certain ideas, facts, or concepts, which includes a set of

symbols and rules to manipulate these. The languages we consider for our discussion is an

abstraction of natural languages. That is, our focus here is on formal languages that need

precise and formal definitions. Programming languages belong to this category. We start with

some basic concepts and definitions required in this regard.

1.2.2 SYMBOLS :

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are the

atoms of the world of languages. A symbol is any single object such as , a, 0, 1, #, begin,

or do. Usually, characters from a typical keyboard are only used as symbols.

1.2.3 ALPHABETS :

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is normally

denoted by . When more than one alphabets are considered for discussion, then subscripts

may be used (e.g. etc) or sometimes other symbol like G may also be introduced.

Example :

1.2.4 STRINGS OR WORDS OVER ALPHABET :

A string or word over an alphabet is a finite sequence of concatenated symbols of .

Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 } .

aab, abcb, b, cc are four strings over the alphabet { a, b, c }.

It is not the case that a string over some alphabet should contain all the symbols from the

alphabet. For example, the string cc over the alphabet { a, b, c } does not contain the symbols

a and b. Hence, it is true that a string over an alphabet is also a string over any superset of

that alphabet.

1.2.5 LENGTH OF A STRING :

The number of symbols in a string w is called its length, denoted by |w|.

Example : | 011 | = 4, |11| = 2, | b | = 1

It is convenient to introduce a notation e for the empty string, which contains no symbols at

all. The length of the empty string e is zero, i.e., | e | = 0.

1.2.6 CONVENTION :

We will use small case letters towards the beginning of the English alphabet to denote

symbols of an alphabet and small case letters towards the end to denote strings over an

alphabet. That is, (symbols) and are strings.

1.2.7 SOME STRING OPERATIONS :

Let and be two strings. The concatenation

of x and y denoted by xy, is the string . That is, the concatenation

of x and y denoted by xy is the string that has a copy of x followed by a copy of y without

any intervening space between them.

Example : Concatenation of the strings 0110 and 11 is 011011 and concatenation of the

strings good and boy is goodboy.

Note that for any string w, we = ew = w. It is also obvious that if | x | = n and | y | = m,

then | x + y | = n + m.

u is a prefix of v if v = ux for some string x.

u is a suffix of v if v = xu for some string x.

u is a substring of v if v = xuy for some strings x and y.

Example : Consider the string 011 over the binary alphabet. All the prefixes, suffixes and

substrings of this string are listed below.

Prefixes: e, 0, 01, 011.

Suffixes: e, 1, 11, 011.

Substrings: e, 0, 1, 01, 11, 011.

Note that x is a prefix (suffix or substring) to x, for any string x and e is a prefix (suffix or

substring) to any string.

A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x y.

In the above example, all prefixes except 011 are proper prefixes.

1.2.8 POWERS OF STRINGS :

For any string x and integer , we use to denote the string formed by sequentially

concatenating n copies of x. We can also give an inductive definition of as follows:

 = e, if n = 0 ; otherwise

Example : If x = 011, then = 011011011, = 011 and

1.2.9 POWERS OF ALPHABETS :

We write (for some integer k) to denote the set of strings of length k with symbols

from . In other words,

 = { w | w is a string over and | w | = k}. Hence, for any alphabet, denotes the set

of all strings of length zero. That is, = { e }. For the binary alphabet { 0, 1 } we have the

following.

The set of all strings over an alphabet is denoted by . That is,

The set contains all the strings that can be generated by iteratively concatenating symbols

from any number of times.

Example : If = { a, b }, then = { e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}.

Please note that if , then that is . It may look odd that one can proceed

from the empty set to a non-empty set by iterated concatenation. But there is a reason for this

and we accept this convention.

The set of all nonempty strings over an alphabet is denoted by . That is,

Note that is infinite. It contains no infinite strings but strings of arbitrary lengths.

1.2.10 REVERSAL :

For any string the reversal of the string is .

An inductive definition of reversal can be given as follows:

CHECK YOUR PROGRESS

True/False type questions

1) A grammar is a mechanism used for describing languages.______________

2) The Kleene star operation on a language L, denoted as L*.______________________

3) The transition from one configuration to the next (as defined by the transition function) is

called a turn.____________

4) The most important feature of the automaton is its control unit._____________

5) To concatenate to language L1 and L2 is defined as L1+L2_______________

Answers-

1) True

2) True

3) False

4) True

5) False

1.3 LANGUAGE :

A language over an alphabet is a set of strings over that alphabet. Therefore, a language L is

any subset of . That is, any is a language.

Example :

1. F is the empty language.

2. is a language for any .

3. {e} is a language for any . Note that, . Because the language F does not

contain any string but {e} contains one string of length zero.

4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's.

5. The set of all strings over {a, b, c} that starts with a.

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to

denote languages.

1.3.1 SET OPERATIONS ON LANGUAGES :

 Since languages are set of strings we can apply set operations to languages. Here are some

simple examples (though there is nothing new in it).

Union : A string iff or

Example : { 0, 11, 01, 011 } { 1, 01, 110 } = { 0, 11, 01, 011, 111 }

Intersection : A string iff and .

Example : { 0, 11, 01, 011 } { 1, 01, 110 } = { 01 }

Complement : Usually, is the universe that a complement is taken with respect to. Thus

for a language L, the complement is L(bar) = { | }.

Example : Let L = { x | |x| is even }. Then its complement is the language { | |x| is

odd }.

Similarly we can define other usual set operations on languages like relative complement,

symmetric difference, etc.

1.3.2 REVERSAL OF A LANGUAGE :

The reversal of a language L, denoted as , is defined as: .

Example :

1. Let L = { 0, 11, 01, 011 }. Then = { 0, 11, 10, 110 }.

2. Let L = { | n is an integer }. Then = { | n is an integer }.

1.3.3 LANGUAGE CONCATENATION :

The concatenation of languages and is defined as

 = { xy | and }.

Example : { a, ab }{ b, ba } = { ab, aba, abb, abba }.

Note that ,

1. in general.

2.

 3.

1.3.4 ITERATED CONCATENATION OF LANGUAGES :

Since we can concatenate two languages, we also repeat this to concatenate any number of

languages. Or we can concatenate a language with itself any number of times. The

operation denotes the concatenation of L with itself n times. This is defined formally as

follows:

Example : Let L = { a, ab }. Then according to the definition, we have

and so on.

1.3.5 KLEENE'S STAR OPERATION :

The Kleene star operation on a language L, denoted as is defined as follows :

= (Union n in N)

 =

 = { x | x is the concatenation of zero or more strings from L }

Thus is the set of all strings derivable by any number of concatenations of strings in L. It

is also useful to define

 = , i.e., all strings derivable by one or more concatenations of strings in L. That is

 = (Union n in N and n >0)

 =

Example : Let L = { a, ab }. Then we have,

 =

 = {e} {a, ab} {aa, aab, aba, abab} …

 =

 = {a, ab} {aa, aab, aba, abab} …

Note : e is in , for every language L, including .

The previously introduced definition of is an instance of Kleene star.

1.4 AUTOMATA AND GRAMMARS

• The most important feature of the automaton is its control unit, which can be in any

one of a finite number of interval states at any point. It can change state in some defined

manner determined by a transition function.

Figure 1: The figure above shows a diagrammatic representation of a generic automation.

Operation of the automation is defined as follows.

• At any point of time the automaton is in some integral state and is reading a particular

symbol from the input tape by using the mechanism for reading input. In the next time step

the automaton then moves to some other integral (or remain in the same state) as defined by

the transition function. The transition function is based on the current state, input symbol

read, and the content of the temporary storage. At the same time the content of the storage

may be changed and the input read may be modifed. The automation may also produce some

output during this transition. The internal state, input and the content of storage at any point

defines the configuration of the automaton at that point. The transition from one

configuration to the next (as defined by the transition function) is called a move. Finite state

machine or Finite Automation is the simplest type of abstract machine we consider. Any

system that is at any point of time in one of a finite number of interval state and moves

among these states in a defined manner in response to some input, can be modeled by a finite

automaton. It doesnot have any temporary storage and hence a restricted model of

computation.

1.4.1 GRAMMAR

A grammar is a mechanism used for describing languages. This is one of the most simple but

yet powerful mechanism. There are other notions to do the same, of course.

In everyday language, like English, we have a set of symbols (alphabet), a set of words

constructed from these symbols, and a set of rules using which we can group the words to

construct meaningful sentences. The grammar for English tells us what are the words in it and

the rules to construct sentences. It also tells us whether a particular sentence is well-formed

(as per the grammar) or not. But even if one follows the rules of the english grammar it may

lead to some sentences which are not meaningful at all, because of impreciseness and

ambiguities involved in the language. In english grammar we use many other higher level

constructs like noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can

be defined as

< sentence > < noun-phrase >< predicate >

meaning that "a sentence can be constructed using a 'noun-phrase' followed by a predicate".

 Some more rules are as follows:

< noun-phrase > < article >< noun >

< predicate > < verb >

with similar kind of interpretation given above.

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>;

and eats, runs, swims, walks, are associated with <verb>, then we can construct the sentence-

a cow runs, the boy eats, an pen walks- using the above rules. Even though all sentences are

well-formed, the last one is not meaningful. We observe that we start with the higher level

construct <sentence> and then reduce it to <noun-phrase>, <article>, <noun>, <verb>

successively, eventually leading to a group of words associated with these constructs.

These concepts are generalized in formal language leading to formal grammars. The word

'formal' here refers to the fact that the specified rules for the language are explicitly stated in

terms of what strings or symbols can occur. There can be no ambiguity in it.

Formal definitions of a Grammar

A grammar G is defined as a quadruple.

N is a non-empty finite set of non-terminals or variables,

 is a non-empty finite set of terminal symbols such that

, is a special non-terminal (or variable) called the start symbol,

and is a finite set of production rules.

The binary relation defined by the set of production rules is denoted by , i.e.

 iff .

In other words, P is a finite set of production rules of the form , where

 and

The production rules specify how the grammar transforms one string to another. Given a

string , we say that the production rule is applicable to this string, since it is

possible to use the rule to rewrite the (in) to obtaining a new string .

We say that derives and is denoted as

Successive strings are dervied by applying the productions rules of the grammar in any

arbitrary order. A particular rule can be used if it is applicable, and it can be applied as many

times as described.

We write if the string can be derived from the string in zero or more

steps; if can be derived from in one or more steps.

By applying the production rules in arbitrary order, any given grammar can generate many

strings of terminal symbols starting with the special start symbol, S, of the grammar. The set

of all such terminal strings is called the language generated (or defined) by the grammar.

Formaly, for a given grammar the language generated by G is

That is iff .

If , we must have for some , , denoted as

a derivation sequence of w, The strings are denoted as sentential

forms of the derivation.

Example : Consider the grammar , where N = {S}, ={a, b} and P is the set

of the following production rules

{ S ab, S aSb}

Some terminal strings generated by this grammar together with their derivation is given

below.

S ab

S aSb aabb

S aSb aaSbb aaabbb

It is easy to prove that the language generated by this grammar is

By using the first production, it generates the string ab (for i =1).

To generate any other string, it needs to start with the production S aSb and then the non-

terminal S in the RHS can be replaced either by ab (in which we get the string aabb) or the

same production S aSb can be used one or more times. Every time it adds an 'a' to the left

and a 'b' to the right of S, thus giving the sentential form . When the non-terminal

is replaced by ab (which is then only possibility for generating a terminal string) we get a

terminal string of the form .

There is no general rule for finding a grammar for a given language. For many languages we

can devise grammars and there are many languages for which we cannot find any grammar.

Example: Find a grammar for the language .

It is possible to find a grammar for L by modifying the previous grammar since we need to

generate an extra b at the end of the string . We can do this by adding a

production S Bb where the non-terminal B generates as given in the previous example.

Using the above concept we devise the follwoing grammar for L.

 where

N = { S, B }

P = { S Bb, B ab, B aBb }

1.5 CHECK YOUR PROGRESS

Fill in the blanks

1) An alphabet is a ____________ nonempty set of symbols.

2) A grammar is a mechanism used for describing _____________.

3) For any string the reversal of the string is_______________. .

4) ________________________ is the simplest type of abstract machine we consider.

 5) The transition from one configuration to the next (as defined by the transition function) is

called a___________________

1.6 ANSWER CHECK YOUR PROGRESS

1) Finite

2) Language.

3)

4) Finite automation.

5) Move

1.7 MODEL QUESTION

Qs-1) What do you understand by Languages and Theory of Computations? What is the most

important feature of Automation?

Qs-2) What is move?

Qs-3) What is Grammar? Give the Formal definitions of a Grammar? How will you find

grammar for a language?

Qs-4) What are Symbols? Symbols are indivisible objects or entity that cannot be defined.

Explain How.

Qs-5) What is Language? Explain about the natural languages, programming languages,

mathematical languages?

1.8 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

1.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH.

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI.

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons.

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM.

https://nptel.ac.in/courses/106/103/106103070/

UNIT-II FINITE AUTOMATA

2.1 Learning Objectives

2.2 Finite Automata

2.2.1 States, Transitions and Finite-State Transition System

2.2.2 Deterministic Finite (-state) Automata

2.3Deterministic Finite State Automaton

2.3.1 Acceptance of Strings

2.3.2 Language Accepted or Recognized by a DFA

2.3.3 Extended transition function

2.3.4 Transition table

2.3.5 (State) Transition diagram

2.3.6 Removing Transition

2.3.7 Equivalence of NFA and DFA

2.4 Multiple Next State

2.4.1 - transitions

2.4.2 Acceptance

2.4.3 The Extended Transition function

2.5 Formal definition of NFA

2.5.1 The Language of an NFA

2.6 Check your progress

2.7 Answer Check your progress

2.8 Model Question

2.9 References

2.10 Suggested readings

2.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Finite Automata, Finite State Automaton,

Multiple Next State, Formal definition of NFA and the Language of an NFA. We also

understand States, Transitions and Finite-State Transition System.

2.2 FINITE AUTOMATA

Automata (singular : automation) are a particularly simple, but useful, model of computation.

They were initially proposed as a simple model for the behavior of neurons. The concept of a

finite automaton appears to have arisen in the 1943 paper “A logical calculus of the ideas

immanent in nervous activity", by Warren McCullock and Walter Pitts. In 1951 Kleene

introduced regular expressions to describe the behaviour of finite automata. He also proved

the important theorem saying that regular expressions exactly capture the behaviours of finite

automata. In 1959, Dana Scott and Michael Rabin introduced non-deterministic automata and

showed the surprising theorem that they are equivalent to deterministic automata. We will

study these fundamental results. Since those early years, the study of automata has continued

to grow, showing that they are indeed a fundamental idea in computing.

2.2.1 STATES, TRANSITIONS AND FINITE-STATE

TRANSITION SYSTEM :

Let us first gives some intuitive idea about a state of a system and state transitions before

describing finite automata.

Informally, a state of a system is an instantaneous description of that system which gives all

relevant information necessary to determine how the system can evolve from that point on.

Transitions are changes of states that can occur spontaneously or in response to inputs to the

states. Though transitions usually take time, we assume that state transitions are instantaneous

(which is an abstraction).

Some examples of state transition systems are: digital systems, vending machines, etc.

A system containing only a finite number of states and transitions among them is called

a finite-state transition system.

Finite-state transition systems can be modeled abstractly by a mathematical model

called finite automation.

We said that automata are a model of computation. That means that they are a simplified

abstraction of `the real thing'. So what gets abstracted away? One thing that disappears is any

notion of hardware or software. We merely deal with states and transitions between states.

The distinction between program and machine executing it disappears. One could say that an

automaton is the machine and the program. This makes automata relatively easy to

implement in either hardware or software. From the point of view of resource consumption,

the essence of a finite automaton is that it is a strictly finite model of computation.

Everything in it is of a fixed, finite size and cannot be modified in the course of the computation.

2.2.2 DETERMINISTIC FINITE (-STATE) AUTOMATA

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an

input string -- one symbol at a time -- and then, after the input has been completely read,

decides whether to accept or reject the input. As the symbols are read from the tape, the

automaton can change its state, to reflect how it reacts to what it has seen so far.

Thus, a DFA conceptually consists of 3 parts:

A tape to hold the input string. The tape is divided into a finite number of cells. Each cell

holds a symbol from .

A tape head for reading symbols from the tape

A control , which itself consists of 3 things:

finite number of states that the machine is allowed to be in (zero or more states are designated

as accept or final states),

a current state, initially set to a start state,

a state transition function for changing the current state.

An automaton processes a string on the tape by repeating the following actions until the tape

head has traversed the entire string:

The tape head reads the current tape cell and sends the symbol s found there to the control.

Then the tape head moves to the next cell.

he control takes s and the current state and consults the state transition function to get the

next state, which becomes the new current state.

Once the entire string has been processed, the state in which the automation enters is

examined. If it is an accept state , the input string is accepted ; otherwise, the string

is rejected . Summarizing all the above we can formulate the following formal definition:

2.3 DETERMINISTIC FINITE STATE AUTOMATON :

A Deterministic Finite State Automaton (DFA) is a 5-tuple :

Q is a finite set of states.

 is a finite set of input symbols or alphabet.

 is the “next state” transition function (which is total). Intuitively, is a

function that tells which state to move to in response to an input, i.e., if M is in state q and

sees input a, it moves to state .

 is the start state.

 is the set of accept or final states.

2.3.1 ACCEPTANCE OF STRINGS :

A DFA accepts a string if there is a sequence of states in Q such

that

1. is the start state.

2. for all .

3. .

2.3.2 LANGUAGE ACCEPTED OR RECOGNIZED BY A DFA :

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and

is denoted by i.e.

The notion of acceptance can also be made more precise by extending the transition

function .

2.3.3 EXTENDED TRANSITION FUNCTION :

Extend (which is function on symbols) to a function on strings,

i.e. .

That is, is the state the automation reaches when it starts from the state q and finish

processing the string w. Formally, we can give an inductive definition as follows:

The language of the DFA M is the set of strings that can take the start state to one of the

accepting states i.e.

L(M) = { | M accepts w }

 = { | }

Example 1 :

 is the start state

It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the

DFA is any string over { 0, 1} having at least one 1.

We can describe the same DFA by transition table or state transition diagram as following

TRANSITION TABLE :

 0 1

It is easy to comprehend the transition diagram.

Explanation : We cannot reach find state w/0 or in the i/p string. There can be any no. of

0's at the beginning. (The self-loop at on label 0 indicates it). Similarly there can be any

no. of 0's & 1's in any order at the end of the string.

2.3.4 TRANSITION TABLE :

It is basically a tabular representation of the transition function that takes two arguments (a

state and a symbol) and returns a value (the “next state”).

• Rows correspond to states,

• Columns correspond to input symbols,

• Entries correspond to next states

• The start state is marked with an arrow

• The accept states are marked with a star (*).

 0 1

2.3.5 (STATE) TRANSITION DIAGRAM :

A state transition diagram or simply a transition diagram is a directed graph which can be

constructed as follows:

1. For each state in Q there is a node.

2. There is a directed edge from node q to node p labeled a iff . (If there are

several input symbols that cause a transition, the edge is labeled by the list of these

symbols.)

3. There is an arrow with no source into the start state.

4. Accepting states are indicated by double circle.

5. Here is an informal description how a DFA operates. An input to a DFA can be any

string . Put a pointer to the start state q. Read the input string w from left to

right, one symbol at a time, moving the pointer according to the transition function,

. If the next symbol of w is a and the pointer is on state p, move the pointer

to . When the end of the input string w is encountered, the pointer is on some

state, r. The string is said to be accepted by the DFA if and rejected if .

Note that there is no formal mechanism for moving the pointer.

6. A language is said to be regular if L = L(M) for some DFA M

2.3.6 REMOVING TRANSITION
- transitions do not increase the power of an NFA . That is, any -NFA (NFA with

 transition), we can always construct an equivalent NFA without -transitions. The

equivalent NFA must keep track where the NFA goes at every step during computation.

This can be done by adding extra transitions for removal of every - transitions from the -

 NFA as follows.

If we removed the - transition from the - NFA , then we need to moves from

state p to all the state on input symbol which are reachable from state q (in the -

 NFA) on same input symbol q. This will allow the modified NFA to move from state p to all

states on some input symbols which were possible in case of -NFA on the same input

symbol. This process is stated formally in the following theories.

Theorem if L is accepted by an - NFA N , then there is some equivalent

 without transitions accepting the same language L

Proof:

 Let be the given with

We construct

Where, for all and and

Other elements of N' and N

We can show that i.e. N' and N are equivalent.

We need to prove that

 i.e.

We will show something more, that is,

 We will show something more, that is,

Basis : , then

But by definition of .

Induction hypothesis Let the statement hold for all with .

By definition of extension of

By inductions hypothesis.

Assuming that

By definition of

Since

To complete the proof we consider the case

When i.e. then

 and by the construction of wherever constrains a state

in F.

If (and thus is not in F), then with leads to an accepting state

in N' iff it leads to an accepting state in N (by the construction of N' and N).

Also, if (, thus w is accepted by N' iff w is accepted by N (iff)

If (and, thus in M we load in F), thus is accepted by

both N' and N .

Let . If w cannot lead to in N , then . (Since can add transitions to get

an accept state). So there is no harm in making an accept state in N'.

Ex: Consider the following NFA with - transition.

 0 1

 Transition table

 0 1

 Transition table ' for the equivalent NFA without - moves

Since the start state q0 must be final state in the equivalent NFA .

Since and and we add moves

 and in the equivalent NFA . Other moves are also constructed accordingly.

 -closures:

The concept used in the above construction can be made more formal by defining the -

closure for a state (or a set of states). The idea of -closure is that, when moving from a

state p to a state q (or from a set of states Si to a set of states Sj) an input , we need to

take account of all -moves that could be made after the transition. Formally, for a given

state q,

 -closures:

Similarly, for a given set

 -

closures:

So, in the construction of equivalent NFA N' without -transition from any NFA with

 moves. the first rule can now be written as

2.3.7 EQUIVALENCE OF NFA AND DFA
It is worth noting that a DFA is a special type of NFA and hence the class of languages

accepted by DFA s is a subset of the class of languages accepted by NFA s. Surprisingly,

these two classes are in fact equal. NFA s appeared to have more power than DFA s because

of generality enjoyed in terms of -transition and multiple next states. But they are no more

powerful than DFA s in terms of the languages they accept.

Converting DFA to NFA

Theorem: Every DFA has as equivalent NFA

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is defined

from whereas in case of an NFA it is defined from

 and be a DFA . We construct an equivalent NFA

 as follows.

 i. e

If and

All other elements of N are as in D.

If then there is a sequence of states such

that

Then it is clear from the above construction of N that there is a sequence of states

(in N) such that and and

hence

Similarly we can show the converse.

Hence ,

Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate the

behaviour of the NFA . For this, the DFA have to keep track of all the states where the NFA

could be in at every step during processing a given input string.

There are possible subsets of states for any NFA with n states. Every subset corresponds to

one of the possibilities that the equivalent DFA must keep track of. Thus, the

equivalent DFA will have states.

The formal constructions of an equivalent DFA for any NFA is given below. We first

consider an NFA without transitions and then we incorporate the affects of transitions

later.

Formal construction of an equivalent DFA for a given NFA without transitions.

Given an without - moves, we construct an equivalent DFA

 as follows

 i.e.

 (i.e. every subset of Q which as an element in F is considered as

a final state in DFA D)

for all and

where

That is,

To show that this construction works we need to show that L(D)=L(N) i.e.

 Or,

We will prove the following which is a stranger statement thus required.

Proof : We will show by inductions on

Basis If =0, then w =

So, by definition.

Inductions hypothesis : Assume inductively that the statement holds of length less

than or equal to n.

Inductive step

 Let , then with

Now,

Now, given any NFA with -transition, we can first construct an equivalent NFA without

-transition and then use the above construction process to construct an equivalent DFA , thus,

proving the equivalence of NFA s and DFA s..

It is also possible to construct an equivalent DFA directly from any given NFA with -

transition by integrating the concept of -closure in the above construction.

Recall that, for any

 - closure

:

In the equivalent DFA , at every step, we need to modify the transition functions to keep

track of all the states where the NFA can go on -transitions. This is done by

replacing by -closure , i.e. we now compute at every step as

follows:

Besides this the initial state of the DFA D has to be modified to keep track of all the states

that can be reached from the initial state of NFA on zero or more -transitions. This can be

done by changing the initial state to -closure () .

It is clear that, at every step in the processing of an input string by the DFA D , it enters a

state that corresponds to the subset of states that the NFA N could be in at that particular

point. This has been proved in the constructions of an equivalent NFA for any -NFA

If the number of states in the NFA is n , then there are states in the DFA . That is, each

state in the DFA is a subset of state of the NFA .

But, it is important to note that most of these states are inaccessible from the start state

and hence can be removed from the DFA without changing the accepted language. Thus, in

fact, the number of states in the equivalent DFA would be much less than .

Example : Consider the NFA given below.

Transition table

 0 1

{ }

 Since there are 3 states in the NFA

There will be states (representing all possible subset of states) in the equivalent DFA .

The transition table of the DFA constructed by using the subset constructions process is

produced here.

closures The start state of the DFA is -

subsets that contains The final states are all those

 (since in the NFA).

Let us compute one entry,

 0 1

{ }

Similarly, all other transitions can be computed.

Corresponding transition fig. for the DFA is shown as

te that states are not accessible and hence can be

removed. This gives us the following simplified DFA with only 3 states.

It is interesting to note that we can avoid encountering all those inaccessible or unnecessary

states in the equivalent DFA by performing the following two steps inductively.

1. If is the start state of the NFA, then make - closure () the start state of the

equivalent DFA . This is definitely the only accessible state.

If we have already computed a set of states which are accessible. Then .

compute because these set of states will also be accessible.

Following these steps in the above example, we get the transition table given below

 0 1

Non determinism is an important abstraction in computer science. Importance of non

determinism is found in the design of algorithms. For examples, there are many problems

with efficient nondeterministic solutions but no known efficient deterministic solutions. (

Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a process is in a

distributed system is also a good example of nondeterministic situation. Because the

behaviour of a process might depend on some messages from other processes that might

arrive at arbitrary times with arbitrary contents.

It is easy to construct and comprehend an NFA than DFA for a given regular language. The

concept of NFA can also be used in proving many theorems and results. Hence, it plays an

important role in this subject.

In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is

defined in the same way as the DFA but with the following two exceptions:

• multiple next state.

• - transitions.

CHECK YOUR PROGRESS

True/False type questions

1) Finite-state transition systems can be modeled abstractly by a mathematical model

called Finite Automation.______________

2) Transitions are changes of states that can occur spontaneously or in response to inputs to

the states._____________

3) Every DFA has as equivalent NFA___________

4) - transitions increase the power of an NFA ._____________

5) A system containing only a finite number of states and transitions among them is called

a infinite state transition.____________

Answers:

1) True

2) True

3) True

4) False

5) False

2.4 MULTIPLE NEXT STATE :

In contrast to a DFA, the next state is not necessarily uniquely determined by the current

state and input symbol in case of an NFA. (Recall that, in a DFA there is exactly one start

state and exactly one transition out of every state for each symbol in).

This means that - in a state q and with input symbol a - there could be one, more than one or

zero next state to go, i.e. the value of is a subset of Q. Thus =

 which means that any one of could be the next state.

The zero next state case is a special one giving = , which means that there is no

next state on input symbol when the automata is in state q. In such a case, we may think that

the automata "hangs" and the input will be rejected.

2.4.1 - TRANSITIONS :

In an transition -, the tape head doesn't do anything- it doesnot read and it doesnot move.

However, the state of the automata can be changed - that is can go to zero, one or more

states. This is written formally as implying that the next state could

by any one of w/o consuming the next input symbol.

2.4.2 ACCEPTANCE :

Informally, an NFA is said to accept its input if it is possible to start in some start state and

process , moving according to the transition rules and making choices along the way

whenever the next state is not uniquely defined, such that when is completely processed

(i.e. end of is reached), the automata is in an accept state. There may be several possible

paths through the automation in response to an input since the start state is not determined

and there are choices along the way because of multiple next states. Some of these paths may

lead to accpet states while others may not. The automation is said to accept if at least one

computation path on input starting from at least one start state leads to an accept state-

otherwise, the automation rejects input . Alternatively, we can say that, is accepted iff

there exists a path with label from some start state to some accept state. Since there is no

mechanism for determining which state to start in or which of the possible next moves to

take (including the -transitions) in response to an input symbol we can think that the

automation is having some "guessing" power to chose the correct one in case the input is

accepted.

Example 1 : Consider the language L = { {0, 1}* | The 3rd symbol from the right is 1}.

The following four-state automation accepts L.

The m/c is not deterministic since there are two transitions from state on input 1 and no

transition (zero transition) from on both 0 & 1.

For any string whose 3rd symbol from the right is a 1, there exists a sequence of legal

transitions leading from the start state q, to the accept state . But for any string where

3rd symbol from the right is 0, there is no possible sequence of legal tranisitons leading

from and . Hence m/c accepts L. How does it accept any string L?

The m/c starts at and remains in the state on any input until the 3rd symbol from the

right is encountered. (Of course, must satisfy | | 3). At this point, if the symbol is 1, it

goes to the state and these enters & in the next two steps on any input 0 or 1. But if

the 3rd symbol from the right is , thus it will get stuck at that point, because of no

transition defined.

To enter the state from , the m/c needs the input 1. If the 1 occur prior to the position 4

in the input or more from the right (instead of 3rd), thus it can enter from on that input

and finally will enter accept state but at that point some of the input symbols may be left

i.e. the input will not be exhausted and hence, the string will not be accepted by the m/c.

2.4.3THE EXTENDED TRANSITION FUNCTION, :
To describe acceptance by an NFA formally, it is necessary to extend the transition function,

denoted as , takes a state and a string , and returns the set of states, S Q,

that the NFA is in after processing the string if it starts in state q.

Formally, is defined as follows:

1. that is, without rending any input symbol, an NFA doesnot change

state.

2. Let some and a . Also assume that

. Then .

That is, can be computed by first computing , and by then following any

transitive from any of these stats that is labelled a.

2.5 FORMAL DEFINITION OF NFA :

Formally, an NFA is a quituple where Q, , , and F bear the same

meaning as for a DFA, but , the transition function is redefined as follows:

where P(Q) is the power set of Q i.e. .

2.5.1 THE LANGUAGE OF AN NFA :
From the discussion of the acceptance by an NFA, we can give the formal definition of a

language accepted by an NFA as follows :

If is an NFA, then the langauge accepted by N is writtten as L(N) is

given by .

That is, L(N) is the set of all strings w in such that contains at least one

accepting state.

2.6 CHECK YOUR PROGRESS

Fill in the blanks

1) A systems can be modeled abstractly by a mathematical model called__________

2) There are__________ states in the DFA

3)____________ transitions do not increase the power of an NFA .

4) ___________ are changes of states that can occur spontaneously or in response to inputs to

the states.

5) A ________ to hold the input string.

2.7 ANSWER CHECK YOUR PROGRESS

1) Finite Automation.

2)

3)

4) Transitions

5) Tape

2.8 MODEL QUESTION

Qs-1) What is finite automation? Also explain States, Transitions and Finite-State Transition

System.

Qs-2) What is transition? Explain the difference between state transition diagram or simply a

transition diagram.

Qs-3) What is Deterministic Finite State Automaton? DFA conceptually consist of how many

parts?

Qs-4) What is Transition table? How can we remove epsilon transition?

Qs-5) What is the difference between NFA and DFA? How can we convert NFA to DFA?

2.8 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

2.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

UNIT-III REGULAR EXPRESSIONS (RE)

3.1 Learning Objectives

3.2 Regular Expressions (RE)

3.3 Regular Expression and Regular Language

3.4 Regular Grammars

3.5 Some Decision Algorithms for CFLs

3.6 Check your progress

3.7 Answer Check your progress

3.8 Model Question

3.9 References

3.10 Suggested readings

3.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Regular Expressions (RE),

Regular Expression and Regular Language, Regular Grammars. We also understand Some

Decision Algorithms for CFLs.

3.2 REGULAR EXPRESSIONS (RE)

RES: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain

recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.

Basis :

i) is a RE

ii) is a RE

iii) , a is RE.

These are called primitive regular expression i.e. Primitive Constituents

REs: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain

recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.

Basis :

 i) is a RE

ii) is a RE

iii) , a is RE.

These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

If and are REs over, then so are

i)

ii)

iii)

iv)

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) by a

finite no of applications of the recursive step (given in 2).

Example : Let = { 0,1,2 }. Then (0+21)*(1+ F) is a RE, because we can construct this

expression by applying the above rules as given in the following step.

Steps RE Constructed Rule Used

1 1 Rule 1(iii)

2

Rule 1(i)

3 1+ Rule 2(i) & Results of Step 1, 2

4 (1+) Rule 2(iv) & Step 3

5 2 1(iii)

6 1 1(iii)

7 21 2(ii), 5, 6

8 0 1(iii)

9 0+21 2(i), 7, 8

10 (0+21) 2(iv), 9

11 (0+21)* 2(iii), 10

12 (0+21)* 2(ii), 4, 11

Language described by REs : Each describes a language (or a language is associated with

every RE). We will see later that REs are used to attribute regular languages.

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can

define the language L(r) associated with (or described by) a REs as follows.

1. is the RE describing the empty language i.e. L() = .

2. is a RE describing the language { } i.e. L() = { } .

3. , a is a RE denoting the language {a} i.e . L(a) = {a} .

4. If and are REs denoting language L() and L() respectively, then

i) is a regular expression denoting the language L() = L() L()

ii) is a regular expression denoting the language L()=L() L()

iii) is a regular expression denoting the language

iv) () is a regular expression denoting the language L(()) = L()

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is

L(0*(0+1)) = L(0*) L(0+1)by 4(ii)

= L(0)*L(0) L(1)

= { , 0,00,000,........} {0} {1}

= { , 0,00,000,........} {0,1}

= {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............}

 Precedence Rule

Consider the RE ab + c. The language described by the RE can be thought of

either L(a)L(b+c) or L(ab) L(c) as provided by the rules (of languages described by REs)

given already. But these two represents two different languages lending to ambiguity. To

remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other

algebras mod in mathematics.

For REs, the order of precedence for the operators is as follows:

i) The star operator precedes concatenation and concatenation precedes union (+) operator.

ii) It is also important to note that concatenation & union (+) operators are associative and

union operation is commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab)

 L(c) i.e. it should be grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example, the

language represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the

language L(a)(L(b))* L(b)

Example : The RE (ab)*+b represents the language (L(a)L(b))* L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings

over {0,1} which are either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even

number of 0's followed by an odd number of 1's i.e.

Note : The notation is used to represent the RE rr*. Similarly, represents the RE rr,

 denotes r, and so on.

An arbitrary string over = {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. L(r)={ has at least one pair of consecutive

1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what

goes before is completely arbitrary. Considering these observations we can write the REs as

(0+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE

(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the

substring 11 or 00.

Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set

of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE and any

no of 0's before, between and after the 1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before,

between, and after is completely arbitrary. Hence we can write the RE as

(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each

ensuring presence of least two 1's somewhere in the string

i) 0*10*1(0+1)*

ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

L(r) = { has no pair of consecutive 1's}

Solution : Though it looks similar to ex ……., it is harder to construct to construct. We

observer that, whenever a 1 occurs, it must be immediately followed by a 0. This substring

may be preceded & followed by any no of 0's. So the final RE must be a repetition of strings

of the form: 00…0100….00 i.e. 0*100*. So it looks like the RE is (0*100*)*. But in this case

the strings ending in 1 or consisting of all 0's are not accounted for. Taking these observations

into consideration, the final RE is r = (0*100*)(1+)+0*(1+).

Alternative Solution :

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r =

(0+10)*(1+).This is a shorter expression but represents the same language.

CHECK YOUR PROGRESS

True/False type questions

1) The language that is accepted by some FAs are known as Regular language.___________

2) A language L is regular iff it has a regular grammar__________

3) Regular grammar and Finite Automata are equivalent________________

4) There are no algorithms to test emptiness of a CFL._______________

5) If a language is regular, then there is no RE to describe it._____________

Answers-

1) True

2) True

3) True

4) False

5) False

3.3 REGULAR EXPRESSION AND REGULAR LANGUAGE :

Equivalence(of res) with fa :

Recall that, language that is accepted by some FAs are known as Regular language. The two

concepts : REs and Regular language are essentially same i.e. (for) every regular language

can be developed by (there is) a RE, and for every RE there is a Regular Langauge. This fact

is rather suprising, because RE approach to describing language is fundamentally differnet

from the FA approach. But REs and FA are equivalent in their descriptive power. We can put

this fact in the focus of the following Theorem.

Theorem : A language is regular iff some RE describes it.

This Theorem has two directions, and are stated & proved below as a separate lemma

RE to FA :

REs denote regular languages :

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA such

that L(M) L(r).

Proof : To prove the lemma, we apply structured index on the expression r. First, we show

how to construct FA for the basis elements: , and for any . Then we show how to

combine these Finite Automata into Complex Automata that accept the Union,

Concatenation, Kleen Closure of the languages accepted by the original smaller automata.

Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are

represented by transition diagram only.

Basis :

Case (i) : . Then . Then and the following NFA N recognizes L(r).

Formally where Q = {q} and .

Case (ii) : . , and the following NFA N accepts L(r).

Formally where .

Since the start state is also the accept step, and there is no any transition defined, it will

accept the only string and nothing else.

Case (iii) : r = a for some . Then L(r) = {a}, and the following NFA N accepts L(r).

Formally, where for or

Induction :

Assume that the start of the theorem is true for REs and . Hence we can assume that we

have automata and that accepts languages denoted by REs and , respectively

i.e. and . The FAs are represented schematically as shown

below.

Each has an initial state and a final state. There are four cases to consider.

Case (i) : Consider the RE denoting the language . We construct

FA , from and to accept the language denoted by RE as follows :

• Create a new (initial) start state and give - transition to the initial state of

 and .This is the initial state of .

• Create a final state and give -transition from the two final state of and

. is the only final state of and final state of and will be ordinary states

in .

• All the state of and are also state of .

• All the moves of and are also moves of . [Formal Construction]

• It is easy to prove that

Proof: To show that we must show that

=

= by following transition of .

Starts at initial state and enters the start state of either or follwoing the transition

i.e. without consuming any input. WLOG, assume that, it enters the start state of . From

this point onward it has to follow only the transition of to enter the final state of ,

because this is the only way to enter the final state of M by following the e-transition.(Which

is the last transition & no input is taken at hte transition). Hence the whole input w is

considered while traversing from the start state of to the final state of . Therefore

 must accept .

Say, or .

WLOG, say

Therefore when process the string w , it starts at the initial state and enters the final state

when w consumed totally, by following its transition. Then also accepts w, by starting at

state and taking -transition enters the start state of -follows the moves of to

enter the final state of consuming input w thus takes -transition to . Hence proved.

Case(ii) : Consider the RE denoting the language . We construct FA

 from & to accept as follows :

Create a new start state and a new final state

Add - transition from

 to the start state of

 to

final state of to the start state of

All the states of are also the states of . has 2 more states than that of

 namely and .

All the moves of are also included in .

By the transition of type (b), can accept .

By the transition of type (a), can enters the initial state of w/o any input and then

follow all kinds moves of to enter the final state of and then following -transition

can enter . Hence if any is accepted by then w is also accepted by . By the

transition of type (b), strings accepted by can be repeated by any no of times & thus

accepted by . Hence accepts and any string accepted by repeated (i.e.

concatenated) any no of times. Hence .

Case(iv) : Let =(). Then the FA is also the FA for (), since the use of parentheses

does not change the language denoted by the expression.

FA to RE (REs for Regular Languages) :

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some

DFA M, then there is a RE r such that L = L(r).

Proof : We need to construct a RE r such that . Since M is a DFA, it

has a finite no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n.

[Note : if the n states of M were denoted by some other symbols, we can always rename those

to indicate as 1, 2, 3,..., n]. The required RE is constructed inductively.

Notations : is a RE denoting the language which is the set of all strings w such that w is

the label of a path from state i to state j in M, and that path has no intermediate

state whose number is greater then k. (i & j (begining and end pts) are not considered to be

"intermediate" so i and /or j can be greater than k)

We now construct inductively, for all i, j Q starting at k = 0 and finally reaching k = n.

Basis : k = 0, i.e. the paths must not have any intermediate state (since all states are

numbered 1 or above). There are only two possible paths meeting the above condition :

1. A direct transition from state i to state j.

o = a if then is a transition from state i to state j on symbol the single

symbol a.

o = if there are multiple transitions from state i to state j on

symbols .

o = f if there is no transition at all from state i to state j.

2. All paths consisting of only one node i.e. when i = j. This gives the path of length 0

(i.e. the RE denoting the string) and all self loops. By simply adding Î to various

cases above we get the corresponding REs i.e.

o = + a if there is a self loop on symbol a in state i .

o = + if there are self loops in state i as multiple

symbols .

o = if there is no self loop on state i.

Induction :

Assume that there exists a path from state i to state j such that there is no intermediate

state whose number is greater than k. The corresponding Re for the label of the path

is .

There are only two possible cases :

1. The path dose not go through the state k at all i.e. number of all the intermediate states

are less than

k. So, the label of the path from state i to state j is tha language described by the

RE .

2. The path goes through the state k at least once. The path may go from i to j and k may

appear more than once. We can break the into pieces as shown in the figure 7.

⁰

Figure 7

3. The first part from the state i to the state k which is the first recurence. In this path, all

intermediate states are less than k and it starts at iand ends at k. So the RE

 denotes the language of the label of path.

4. The last part from the last occurence of the state k in the path to state j. In this path

also, no intermediate state is numbered greater than k. Hence the RE denoting

the language of the label of the path.

5. In the middle, for the first occurence of k to the last occurence of k , represents a loop

which may be taken zero times, once or any no of times. And all states between two

consecutive k's are numbered less than k.

Hence the label of the path of the part is denoted by the RE .The label of the path

from state i to state j is the concatenation of these 3 parts which is

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by

the following RE

.

We can construct for all i, j {1,2,..., n} in increasing order of k starting with the

basis k = 0 upto k = n since depends only on expressions with a small superscript (and

hence will be available). WLOG, assume that state 1 is the start state and are

the m final states where ji {1, 2, ... , n }, and . According to the

convention used, the language of the automatacan be denoted by the RE

Since is the set of all strings that starts at start state 1 and finishes at final state

 following the transition of the FA with any value of the intermediate state (1, 2, ... , n) and

hence accepted by the automata.

3.4 REGULAR GRAMMARS

A grammar is right-linear if each production has one of the following

three forms:

• A cB ,

• A c,

• A

Where A, B (with A = B allowed) and . A grammar G is left-linear if each

production has once of the following three forms.

A Bc , A c, A

A right or left-linear grammar is called a regular grammar.

Regular Grammars and Finite Automata

Regular grammar and Finite Automata are equivalent as stated in the following theorem.

Theorem : A language L is regular iff it has a regular grammar. We use the following two

lemmas to prove the above theorem.

Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar.

Proof : Let be a DFA that accepts L.

Let and .

We construct the right-linear grammar by letting

N = Q , and

[Note: If , then]

Let . For M to accept w, there must be a sequence of states

 such that

and

By construction, the grammar G will have one production for each of the above transitions.

Therefore, we have the corresponding derivation.

Hence w L(g).

Conversely, if , then the derivation of w in G must have the form as

given above. But, then the construction of G from M implies that

, where , completing the proof.

Lemma 2 : Let be a right-linear grammar. Then L(G) is a regular

language.

Proof: To prove it, we construct a FA M from G to accept the same language.

is constructed as follows:

 (is a special sumbol not in N)

,

For any and and is defined as

 if

and , if .

We now show that this construction works.

Let . Then there is a derivation of w in G of the form

By contradiction of M, there must be a sequence of transitions

implying that i.e. w is accepted by M.

Conversely, if is accepted by M, then because is the only accepting state

of M, the transitions causing w to be accepted by M will be of the form given above. These

transitions corresponds to a derivationof w in the grammar G. Hence , completing

the proof of the lemma.

Given any left-linear grammar G with production of the form , we can construct

from it a right-linear grammar by replacing every production of G of the form

 with

It is easy to prove that . Since is right-linear, is regular. But then

so are i.e. because regular languages are closed under reversal.

Putting the two lemmas and the discussions in the above paragraph together we get the proof

of the theorem-

A language L is regular iff it has a regular grammar.

Example: Consider the regular expression 101*. The DFA for 101* is shown below.

The right linear grammar generating the language denoted by 101* i.e accepted by the above

DFA is produced below follwoing the construction process given in the lemma 1.

Since, C is useless we can eliminate all productins involving C to produce a simpler grammar

for 101*

 Example : Consider the grammar

It is easy to see that G generates the language denoted by the regular expression (01)*0.

The construction of lemma 2 for this grammar produces the follwoing FA.

This FA accepts exactly (01)*1.

3.5 SOMEDECISION ALGORITHMS FOR CFLS

n this section, we examine some questions about CFLs we can answer. A CFL may be

represented using a CFG or PDA. But an algorithm that uses one representation can be made

to work for the others, since we can construct one from the other.

Testing Emptiness :

Theorem : There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the

construction described in the context of elimination of useless symbols, whether the start

symbol is useless. If so, then ; otherwise not.

Testing Membership :

Given a CFL L and a string x, the membership, problem is to determine whether ?

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the

PDA can grow its stack indefinitely on input, and the process may never terminate, even if

the PDA is deterministic.

So, we assume that a CFG is given such that L = L(G).

Let us first present a simple but inefficient algorithm.

Convert G to in CNF generating . If the input string ,

then we need to determine whether and it can easily be done using the technique

given in the context of elimination of -production. If , then iff .

Consider a derivation under a grammar in CNF. At every step, a production in CNF in used,

and hence it adds exactly one terminal symbol to the sentential form. Hence, if the length of

the input string x is n, then it takes exactly n steps to derive x (provided x is in).

Let the maximum number of productions for any nonterminal in is K. So at every step in

derivation, there are atmost k choices. We may try out all these choices, systematically., to

derive the string x in . Since there are atmost i.e. choices. This algorithms is of

exponential time complexity. We now present an efficient (polynomial time) membership

algorithm.

CYK Algorithm to decide membership in CFL

We now present a cubic-time algorithm due to cocke, Younger and Kasami. It uses the

dynamic programming technique-solves smaller sub-problems first and then builds up

solution by combining smaller sub-solutions. It determines for each substring y of the given

string x the set of all nonterminals that generate y. This is done inductively on the length of y.

Let be the given CFG in CNF. Consider the given string x and let

. Let be the substring of x that begins at position i (i.e. i-th symbol of x) and has length j.

Let be the set of all nonterminals A such that .

We write . Where each is a terminal symbol.

 iff . Thus we construct the sets for all .

Combining substrings of length 2, it is clear that, i.e. iff there is a

production in G and and .

That is iff and and

Thus we can construct the sets from the already constructed sets , by inspecting the

grammar.

In general considering substrings of length j, i.e. iff there is a

production in G such that and for some .

That is iff and for some such that . The

idea is to divide, into smaller substrings, using all possible wyas (i.e. for different values

of k), and construct from already

Combining substrings of length 2, it is clear that, i.e. iff there is a

production in G and and .

That is iff and and

Thus we can construct the sets from the already constructed sets , by inspecting the

grammar.

In general considering substrings of length j, i.e. iff there is a

production in G such that and for some .

That is iff and for some such that . The

idea is to divide, into smaller substrings, using all possible wyas (i.e. for different values

of k), and construct from already

Limitations of Finite Automata and Non regular Languages :

The class of languages recognized by FA s is strictly the regular set. There are certain

languages which are non regular i.e. cannot be recognized by any FA

Consider the language

In order to accept is language, we find that, an automaton seems to need to remember when

passing the center point between a's and b's how many a's it has seen so far. Because it would

have to compare that with the number of b's to either accept (when the two numbers are

same) or reject (when they are not same) the input string.

But the number of a's is not limited and may be much larger than the number of states since

the string may be arbitrarily long. So, the amount of information the automaton need to

remember is unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of

states). The fact that FA s have finite memory imposes some limitations on the structure of

the languages recognized. Inductively, we can say that a language is regular only if in

processing any string in this language, the information that has to be remembered at any point

is strictly limited. The argument given above to show that is non regular is informal.

We now present a formal method for showing that certain languages such as are non

regular.

The Pumping Lemma

We can prove that a certain language is non regular by using a theorem called “Pumping

Lemma”. According to this theorem every regular language must have a special property. If a

language does not have this property, than it is guaranteed to be not regular. The idea behind

this theorem is that whenever a FA process a long string (longer than the number of states)

and accepts, there must be at least one state that is repeated, and the copy of the sub string of

the input string between the two occurrences of that repeated state can be repeated any

number of times with the resulting string remaining in the language.

Pumping Lemma :

Let L be a regular language. Then the following property olds for L.

There exists a number (called, the pumping length), where, if w is any string in L of

length at least k i.e. , then w may be divided into three sub strings w = xyz, satisfying

the following conditions:

 i.e.

Proof : Since L is regular, there exists a DFA that recognizes it, i.e. L =

L(M) . Let the number of states in M is n.

Say,

Consider a string such that (we consider the language L to be infinite and hence

such a string can always be found). If no string of such length is found to be in L , then the

lemma becomes vacuously true.

Since . Say while processing the string w , the DFA

M goes through a sequence of states of states. Assume the sequence to be

Since , the number of states in the above sequence must be greater than n + 1. But

number of states in M is only n. hence, by pigeonhole principle at least one state must be

repeated.

Let qi and ql be the ql same state and is the first state to repeat in the sequence (there may be

some more, that come later in the sequence). The sequence, now, looks like

which indicates that there must be sub strings x, y, z of w such that

This situation is depicted in the figure

Since is the first repeated state, we have, and at the same time y cannot be

empty i.e . From the above, it immediately follows that .

Hence . Similarly,

 implying

 implying

and so on.

That is, starting at the loop on state can be omitted, taken once, twice, or many more times,

(by the DFA M) eventually arriving at the final state

Thus, accepting the string xz, xyz, xy2z,... i.e. xyiz for all

Hence .

We can use the pumping lemma to show that some languages are non regular.

Please note, carefully, hat the theorem guarantees the existence of a number as well as

the decomposition of the string w to xyz. But it is not known what they are. So, if the theorem

is violated for particular values of

3.6 CHECK YOUR PROGRESS

Fill in the blanks:

1) A language that is accepted by some FAs are known as_______________

2) Given any CFL L, there is a _______ G to generate it.

3) Regular grammar and ______________ are equivalent.

4) There are algorithms to test _______________ of a CFL.

5) If L is a regular language, then L is generated by some__________________

3.7 ANSWER CHECK YOUR PROGRESS

1) Regular language.

2) CFG

3) Finite Automata

4) Emptiness

5) Right-linear grammar.

3.8 MODEL QUESTION

Qs-1) What is Regular Expression explain with the help of example?

Qs-2) Why Regular expression and Finite automata are equivalent explain with the help of

example?

Qs-3) What is CFL? How emptiness of a CFL is tested?

Qs-4) What is precedence rule? Explain.

Qs-5) What is Context Free Grammar(CFG)? For Context Free Grammar(CFG) which

grammar is used?

3.9 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

3.10 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

UNIT-IV MINIMIZATION OF DETERMINISTIC

FINITE AUTOMATA (DFA)

4.1 Learning Objectives

4.2 Minimization of Deterministic Finite Automata (DFA)

4.3 DFA Isomorphisms

4.3.1 Showing that and M are isomorphic

4.4 The minimal DFA

4.5 A Minimization Algorithm

4.6 Some decision properties of Regular Languages

4.7 Finite Automata with output

4.7.1 Moore machines

4.7.2 Mealy machines

4.8 Equivalence of Moore and Mealy machines

4.9 Check your progress

4.10 Answer Check your progress

4.11 Model Question

4.12 References

4.13 Suggested readings

4.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of DFA Isomorphisms, The minimal DFA, A

Minimization Algorithm, Some decision properties of Regular Languages, Finite Automata

with output, Moore machines, Mealy machines. We also understand Equivalence of Moore

and Mealy machines.

4.2 MINIMIZATION OF DETERMINISTIC FINITE

AUTOMATA (DFA)

For any regular language L it may be possible to design different DFAs to accept L. Given

two DFAs accepting the same language L, it is now natural to ask - which one is more

simple? In this case, obviously, the one with less number of states would be simpler than the

other. So, given a DFA accepting a language, we might wonder whether the DFA could

further be simplified i.e. can we reduce the number of states accepting the same language ?

Consider the follwoing DFA ,

A minute observation will reveal that it accepts the language of the regular expression

The same language is accepted by the following simpler DFA as well.

Figure 2

It is a fact that, for any regular language L there is a unique minimal state DFA (the

uniqueness is up to isomorphism to be defined next).

 For any given DFA M accepting L we can construct the minimal state DFA accepting L by

using an algorithm which uses following generic steps.

• First, remove all the states (of the given DFA M) which are not accessible from the

start state i.e. sates P for which there is no string s.t. . Removing

these states, clearly, will not change the language accepted by the DFA.

• Second, remove all the trap states, i.e. all states P from which there is no transition out

of it.

• Finally, merge all states which are "equivalent" or "indistinguishable". We need to

define formally what is meant by equivalent or indistinguishable states; but at this

point we assume that merging these states would not change the accepted language.

Inaccessible states can easily be found out by using a simple research e.g. depth first search.

removing trap states are also simple. In the example, states 5 and 6 are inaccessible and hence

can be removed, states 1 and 2 are equivalent and can be merged. Similarly states 3 & 4 are

also equivalent and can be merged together to have the minimal DFA as produced above.

To construct the minimal DFA we need to see how to find out indistinguishable or equivalent

states for merging.

we start with a definition and then proceed to find method to construct minimal state DFAs.

4.3 DFA ISOMORPHISMS :

Two DFAs are said to be isomorphism if they are identical upto renaming of the states.

Formally, DFA isomorphisms are defined as follows.

Definiton : Two DFAs and are isomorphic if

there is a bijection s.t. the follwoing hold.

1.

2. , iff

3. ,

o

Theorem : For any regular language L there is a unique (upto isomorphism as defined)

DFA that has a minimum number of states. In fact, the minimum DFA is the same as the one

that has as states the equivalence classes of (as defined in the context of Myhill-Nerode

Theorem).

Proof : Let be the DFA which states are equivalence classes of .

Let be any other DFA recognizing L. we have already shown that

1. is a right invariant equivalence relation of finite index s.t. L is the union of some

of its equivalence classes.

2. is a refinement of .

3. This implies, the number of equivalence classes of (which is equal to the number

of states in M) must be greater than or equal to the number of equivalence classes

of (which is equal to the number of states in , by construction).

4. That is

5. If , then we are done, i.e. is the minimum state DFA for L.

6. If , then to prove the theorem we need to show that DFAs and M are

isomorphism.

4.3.1 SHOWING THAT AND M ARE ISOMORPHIC

To show that and M are isomorphic we have to define a bijection that

satisfies all the three conditions given in the definition of DFA isomorphism.

1. Recall that the states of are where are the

representatives of each k equivalence classes of .

2. Let us define as follows

3. That is, f maps state of to the state in M which can be arrived at processing

the string from the start state of M. we know that .

Hence f is well-defined.

4. f is onto since

5. To show that f is one-to-one, we need to show that if ,

then p = q . That means, we need to show that if ,

then . (since are the representative of different equivalence classes

of , this proves that f is one-to-one).

Let = .

Then

Therefore for any .

Hence, by definition of ,

 iff or .

This shows that f is a bijection.

we now show in the following that it satisfies all the three conditions.

1. Note that, since f is a bijection, . Also note that .

Hence, . Therefore, the initial state of is

mapped to the initial state of M thus satisfying the first condition.

2. We know that for any

3.

 (by definition)
4.

 (Since M accepts L)
5.

 (by definition of f)
6.

Thus final state of are mapped to final stat of M , satisfying the second condition.

7. Observe that, for any ,

This satisfies the third condition of the definition, thus proving that and M are isomorphic.

This also completes the prove that is the minimal state DFA for L since, now, , (
i.e. the number of state Q in any arbitrary DFA M accepting the language L must be greater than

or equal to the number of states of the DFA that has as states the equivalence classes

of .)

4.4 THE MINIMAL DFA

Given DFA M accepting a regular language L, we observe that

1. is the minimal state DFA accepting L.

2. refines , implying

Each equivalence classes of is the union of some equivalence classes of .

3. Hence, each staet of (which correspond to the equivalence class of) can be

obtained by merging states of M. (which correspond to equivalence classes of)

But, how do we decide in general when two states can be merged without changing the language
accepted?

 we now going to devise an algorithm for doing this until no more merging is possible. we start
with the following observations.

• It is not possible to merge an accept state p and a non-accepting state q. Because

if and for some , then x must be accepted
and y must be rejected after merging p and q. But, now, the resulting merged state can
neither be considered as an accept state nor as a non-accepting one.

• If p and q are merged, then we need to merge and , for every , as
well, to maintain determinism.

From the above two observations we conclude that states p and q cannot be merged

if and for some .

Using the concept in the previous page, we now define an indistinguishability relation as follows:

Definition : States p and q are indistinguishable if iff , and is

denoted as . It is easy to see that indistingushability is an equivalence relation.

In other words we say that sattes p and q are "distinguishable" if s.t

 and and is denoted as .

we say that, states p and q of a DFA M accepting a language L can be merged safely (i.e.

without changing the accepted language L) if i.e. if p and q are indistinguishable. we can
prove this by showing that when p and q are merged. Then they correspond to the same state

in .

Formally, iff , and x y.

Proof : (only if) Let , and for some . Now, for

any we have

 iff (since,)

So, iff x y.

(if) Let , and .

Hence, s.t.

 and ()

Hence and .

This implies, and

so, .

4.5 A MINIMIZATION ALGORITHM :

We now produce an algorithm to construct the minimal state DFA from any given DFA
accepting L by merging states inductively.

The algorithm assume that all states are reachable from the start state i.e. there is no
inaccessible states. The algorithm keeps on marking pairs of states (p, q) as soon as it

determines that p and q are distinguishable i.e. . The pairs are, of course, unordered i.e.
pairs (p, q) and (q , p) are considered to be identical. The steps of the algorithm are given
below.

1. For every p, q Q , initially unmark all pairs (p, q).

2. If and (or vice versa) then mark (p, q).

3. Repeat the following step until no more changes occur : If there exists an unmarked

pair (p, q) such that is marked for some , then mark (p, q).

4. iff (p, q) is unmarked.

The algorithm correctly computes all pairs of states that can be distingusihed i.e. unmarked.

It is easy to show (by induction) that the pair (p, q) is mraked by the above algorithm

iff s.t. and (or vice versa) i.e. if .

Example : Let us minimize the DFA given below

Figure 3

we execute the algorithm and mark a pair by putting an X on the table as shown in figure 4. (

Note that the table is a diagonal one having entries for a DFA having n states.)

Figure 4

Initially, all cells are unmarked. (i.e. at step 1 of the algorithm) . After step 2, all cells representing
pairs of states of which one is accepting and the other is non-accepting are marked by putting an
X. The table above shows the status after this step.

In step 3, we consider all unmarked pairs one by one. Considering the unmarked pair ,

we find that & go to and , respectively, on input 0. we use the

notation to indicate this. SInce the pair is not marked,

 cannot be marked at this point. Again, we see that, and is

unmarked. Hence, we cannot mark and since we have considered all input symbols (0 &
1) we need to examine other unmarked pairs. The observations and actions are shown below.

•

• , cannot mark since & are unmarked .

•

• , cannot mark since is unmarked .

• , is marked since is already marked.

• , is marked since is already marked.

• , is never marked since it is not in the table &

hence is not marked.

•
• The resulting table after this pass is given below.

Figure 5

• In the next pass we find that and is marked in the

previous pass .Hence, can be marked now.

• Similarly, and hence can be marked since has
been marked in the previous pass. Other pairs cannot be marked and the resulting table
is shown below. By executing step 3 again we observe that no more pairs can be marked
and hence the algorithm stops with this table as the final result.

• The unmarked pairs left in the table after execution of the algorithm are

 and implying and . Now, we merge & and & to

have new states & , respectively.
• Transitions are adjusted appropriately to obtain the following minimal DFA.

Figure 6

• is a final state, since both & were final states. Similarly is a non-final state.

 goes to on input 0 and 1, since go to and respectively on 0 and 1.Similar,
justifications suffice for other adjusted transitions.

CHECK YOUR PROGRESS

True/False type questions

1)For any regular language L it may be possible to design different DFAs to

accept L.__________

2) For any regular language L there is a unique (upto isomorphism as defined) DFA ._________

3) Moore and Mealy machines both produces output____________

4) A Mealy machine is a four-tuple___________

5) Two DFAs are said to be isomorphism if they are not identical upto renaming of the
states.________

Answers-

1) True

2) True

3) True

4) False

5) False

4.6 SOME DECISION PROPERTIES OF REGULAR

LANGUAGES

At this point we would like to find out answers to some important questions related to regular
languages. The questions we consider here all have answers which may be either “yes” or “no”.
These are known as decision problems since we used to decide whether the answer is “yes” or
“no”. [The reason for considering decision problems is that a regular language is recognized by a
FA, which, in response to an input string, either ‘accepts' or ‘rejects' the input string and can be
considered as producing “yes” or no “answers”, respectively.]

Consider the following typical and important question:

w and a regular language L , is an element of L ?

The answer is either yes or no.

While w is represent explicitly, we wonder how L given to us. Obviously, L cannot be given as an

enumeration of strings (L may be infinite). L will be represented either by a DFA , NFA or regular

expression.

The question presented above is called the “membership problem” for the corresponding regular

language L.

If L is represented by a DFA , the problem has an easy solution-

• Simulate the DFA on input w
• If the DFA ends in an accepting state, the answer is “yes”. Otherwise, the answer is “no”.

The algorithm is very efficient and it can easily be verified that it takes linear time on the length of
the input w

If L is given as an NFA , we can first convert it to an equivalent DFA and than use the above
algorithm to find the answer. This is not efficient, since the conversion algorithm
from NFA to DFA (by using subset constructions) is expensive.

Similarly, if L is expressed by using a regular expression, we can first convert it to an NFA and
than use the above algorithm. We see that this is also an expensive method.

We will consider some more decision problems related to regular languages as given below.

• Given a FA M , is L(M) empty?

• Given a FAM, is L(M) infinite?

• Given two FA s M1 and M2 , do they accept the same language? That is,
whether L(M1)=L(M2)?

The list is not extensive. We will consider decision algorithm for the above mentioned problem
only.

It is interesting to note that we can use the pumping lemma to determine whether the language
accepted by a DFA is empty or infinite. The following theorem states this result.

Theorem : If M is a DFA with n states, than the language accepted by M (i.e. L(M)) is

1. non empty if, and only if, M accepts some string w with

2. infinite if, and only if, M accepts some string w such that

Proof:

3. If M accepts a string w with , then L(M) is clearly non empty. Conversely,
let L(M) be non empty, and let w be the shortest string accepted by M. Then it must be

the case that . Otherwise, according to the pumping lemma w can be
decomposed as w=xyz satisfying all the three constraints of the pumping lemma. So,

 For the case i=0, the string is a string which is shorter

than w (since)

This contradicts that w is the shortest string accepted by M. Hence, .

• Let M accept a string w with . Then by pumping lemma w can be
decomposed as w=xyz satisfying all the three constraints of the pumping lemma. Hence

Therefore, L(M) must be infinite.

Conversely, let L(M) be infinite, and let w be the shortest string accepted by M whose length

is at least n i.e. w . (Note that such a string must exist, since L(M) is infinite and there

are only a finite number of strings of length less than n). Then, it must be the case

that, . Otherwise (i.e. if , by the pumping lemma we can

decompose w as w=xyz satisfying all the constrains of the pumping lemma. So,

. For i=0, in particular, is a shorter string

than w (since), leading to a contradiction. Hence, .

This theorem gives us the following naive algorithm to determine the emptiness and

finiteness of a language L(M) accepted by a DFA M .

Algorithm to decide emptiness

• Run M on all strings of length less than n , where n is the number of states.

• If M accepts any of these, than L(M) is nonempty. Otherwise, L(M) is

empty. (From part (1) of the theorem).

But the algorithm is highly inefficient, since the DFA M may have to check all the strings of

length less than n and there are strings of such length.

Algorithm to decide finiteness of L(M) .

• Run M on all strings of length between n and 2n

If M accepts any string of these, then L(M) is infinite. Otherwise, L(M) is

finite.(From part (2) of the theorem)

Once again, we observe that the algorithm is highly inefficient (i.e. experimental)

But, efficient algorithms exists to decide these problem. We know that a DFA can be

represented by a directed graph and for a DFA to accept a string there must exist a path from

the start state to any final state. Using this fact, we have the following efficient algorithm to

decide emptiness. (Assume, DFA M is given as a directed graph)

• Do DFA from the start state q0

• If any of the final state is reachable from the start state q0 , than L(M) is

nonempty. Otherwise, L(M) is empty

We now consider an efficient algorithm to determine whether L(M) is infinite.

We know that all the states which are not reachable from q0 can be detected (along with the

associated transition) without changing the accepted language.

Similarly, the accepted language does not change if all the states that cannot lead to an

accepting state (also called ‘trap' states) are detected.

Claim1 : If L(M) is infinite, then there must exist a cycle in the directed graph.

Proof : Since L(M) is infinite, according to the previous theorem, there exists a

string with where n is the number of states in the DFA M . Since the

length of the accepted string w is greater than the number of states, there must exist a

repeated state in the path from q0 to the final state while processing the string w. His

repetition of (at least one) state in the path implies the existence of a cycle.

Claim 2: If there is a cycle in the directed graph (for the DFA M), then L(M) must be

infinite.

Proof : We know that all states are reachable from the start state q0. Also, there can not be

any cycle involving “useless” states, because these have already been removed.

Hence if there exists a cycle, there must be a path from the start state q0 to one of the states

involved in the cycle and, also, there must be a path from on e of the states involved in the

cycle to an accepting state. The situation is depicted in the following figure.

So, clearly, starting at , than following the cycle infinitely many times, the DFA can accept

infinitely many strings.

Hence, L(M) is infinite.

It is a well-known fact that there exists efficient algorithm to detect a cycle in directed graph.

From the above, we have the following efficient algorithm to decide infiniteness of L(M).

• Delete all states not reachable from the start state and delete all states that

cannot lead to an accept state (DFS can be used for this).

• If there is a cycle, then L(M) is infinite. Otherwise, L(M) is finite.

It is observed that using the decision algorithm for emptiness and finiteness together with

closure properties we can find more decision algorithms. Here is an example.

Example : Given DFA s M1 and M2. Is L(M1) = L(M2)?

Solution : Observe that and

Thus L(M1) = L(M2), iff and This implies that

L(M1) = L(M2) iff

Since regular languages are closed under union, intersection and complement, we can

construct a DFA M3 recognizing the language

If M3 accepts any string (i.e.) then) .Otherwise , L(M1) =

L(M2)

We can use emptiness algorithm to decide if)

4.7 FINITE AUTOMATA WITH OUTPUT

The definition of FA that we have already considered allows only two possible outputs is

response to an input string, accept or reject. The definition can be extended so that the output

can be chosen from some alphabet. Considering two different approaches to associate the

output we have two different types of machines in the category- Moore machines and Mealy

machines (They are named after the inventors). In a Moore machine the output is associated

with the state, whereas in a Mealy machine the output is associated with the transition. Even

though the two models look different, we can prove that they are equivalent.

4.7.1 MOORE MACHINES :

A Moore machine is a six-tuple

 where and q0 are as in DFA . is the output alphabet

and , is a mapping which gives the output associated with each state. Note that

there is no final state and the input and output alphabet need not to be same.

et the sequence of states the machine goes through in response to the input

sequence is . Then the output produced by the machine in

response to this input is defined as .Note that a Moore

machine produces an output without taking any input on state q0. That is, is the output

in response to input . Hence, the length of the output string is always one more than that of

the input string.

Example 1: Suppose we wish to determine exactly low many times the sub string occurs

in the input string. The Moore machine presented by the given transition diagram

Keeps count of this number.

Note that, a state p here is annotated with if it the output symbol is

associated with the state p i.e. if .

Every state outputs 0 except the state q3 which outputs 1 start state q0, following any

path, we arrive at state q3 the last three input symbols read must be . As soon as we

arrive at q3, it outputs 1(prior to that it outputs all 0s) indicating that it has read the sub

string in the input. From q3 we can arrive at q1 on input b and then again arrive

at q3(following some path) provided the last three input symbols read are . Thus,

the machine outputs 1 as soon as it read the sub string ; otherwise, it outputs 0s. So,

the number of sub string in the input is given by the number of 1s in the output string at

the point when the machine finishes processing the input string.

For example, on input the machine will go through the

states producing the output sequence 000000010000010

indicating that the sub string occurs twice in the input string as the number of 1s in the

output string is 2.

he Moore machine can also be represented by a table, where the table to represent the

transition remains same as in FA , but there is a separate column (separated by a double

line) to represent the output associated with each state. The tabular form of the Moore

machine of the above example is given below.

b

q0 q0 q1 0

q1 q2 q1 0

q2 q3 q1 0

q3 q0 q1 1

A Moore machine does not define a language of accepted strings, because in response to any

input string it produces an output string and there is no concept of final states. The processing

of the input string terminates when it outputs the symbol corresponding to the last input

symbol.

For a given FA M , accepting the language L(M), if we associate 0 to any nonaccepting state

and 1 to each accept state, then the 1's in any output sequence (produced in response to some

input sequence) mark the ending of all sub strings of the input starting from the first symbol

that are in L(M).

rom this, we can consider FA to be a special case of a Moore machine where the output

alphabet and a state p is ‘accepting' if and only if .

So, a Moore machine can be said to recognize the language of all input strings whose outputs

ends in a 1. In the example Moore machine given above if we make q3 as final state and

remove all outputs associated with the states, it will be a DFA accepting all string over

 that ends with .

4.7.2 MEALY MACHINES :

A Mealy machine is a six-tuple, , where all elements are as in Moore

machine, except for which is defined as

This means that gives the output associated with the transition from state q on

input .

Let the sequence of states the machine goes through in response to the input

string is .

Then the output produced by the machine in response to this input is defined

by . The length of the output sequence unlike for the Moore

machine.

Example:2 Consider the Mealy machine given below.

The machine outputs 1 in the output string in response to some input string to indicate two

consecutive occurrences of in the input.

For example, the out put corresponding to the input is 00001100100.

We can express the Mealy machine in tabular form as indicated below.

The entry b/0 for the raw q1 & column q2indicates that there is a transition from state q1 to

state q2 on input b and the output associated with this transition is 0. For no transition defined

from state p to state q the entry for raw p & column q will be

 q0 q1 q2

q0

/0 b/0

q1

/1 b/0

q2

/0 b/0

4.8 EQUIVALENCE OF MOORE AND MEALY MACHINES

Since Moore and Mealy machines both produces output (instead of normal convention of

accepting a language by a FA). We can compare them in the sense that they are equivalent if

they always produce the same output string in response to the same input string. But there can

never be an exact match between the output strings produced by them since the length of the

output string of a Moore machine is always one more than that of a Mealy machine in

response to the same input string. However, if we ignore the response of a Moore machine for

its initial state (i.e. response to input), then we can define the equivalence of a Moore

machine, and a Mealy machine by saying that if for all input

string , where is the output of for its initial state

and are outputs of and on w respectively. Then they are equivalent

he following two theorems prove the equivalence of Moore and Mealy machines in this

sense.

Theorem : If is a Moore machine, then there is a Mealy machine

 and .

Proof :

We construct a Mealy machine

 from the given Moore machine , where all the elements

except are as in . is defined as

That is, the output associated with state q in the Moore machine will be associated with the

transitions going to the state q (from other state) on the same input symbol in the Mealy

machine as shown below –

Now, for any given input string . If goes through a sequence of

states then it produces the output

sequence . According to the construction, the Mealy

machine also goes through the same sequence of states but produces the following output

sequence.

Hence: , proving the equivalence as defined.

Note that, to construct an equivalent Moore machine from a Mealy machine we cannot adopt

the reverse process given in the above constructions i.e. simply push the output associated

with a transition to the state (where this, transition leads to) to be considered as the output

produced by the state. This is because, there may be two transitions going to a state with

different outputs associated with it as shown below.

This is an ambiguous situation as we are not sure which output symbol (0 or 1) is to be

associated with the state q

This situation can be handled by creating copies of the state q for all different outputs

associated with incoming transitions (keeping all other things same) as shown below.

Number of states are increase to remember different output symbols associated with moving

transitions, and hence, states are considered to be order pairs in the Mealy machine. This

construction is presented formally in the theorem given below.

Theorem : If is a Mealy machine, then there is a Moore machine

 equivalent to .

Proof : We construct a Moore machine

Where b0 is any symbol in . Transition ' is defined as

That is, the first component of 's state determines the moves of and the second

component of is the output associated with some transition in into the state q.

Output functions ' of is defined as

Following the construction, it can easily been shown that if produces the output

string in response to the input string after going through the

states , then also produces the same output string in response to the same input

string after going through the states

Example 3 : The equivalent Mealy machine for the Moore machine given in example 1 is

produced below.

 Example 3 : The equivalent Mealy machine for the Moore machine given in example 1 is

produced below.

Example: 4 The Moore machine which is equivalent to the Mealy machine given is example

2 is shown below.

The states [q1,0] & [q1,1] an be renamed as q1 & q3 respectively.

4.9 CHECK YOUR PROGRESS

Fill in the blanks:

1) A Moore machine is a ____________

2) Two DFA are isomorphic if they accept __________

3) For any regular language L there is a _________

4) Moore and Mealy machines both produces__________

5) If L(M) is infinite, then there must exist a __________ in the directed graph.

4.10 ANSWER CHECK YOUR PROGRESS

1) Six tuple

2) Bijection

3) Unique DFA

4) Output

5) Cycle

4.11 MODEL QUESTION

Qs-1) What is Deterministic Finite Automata (DFA) isomorphism explain with the help
of example?

Qs-2) What is Equivalence of Moore and Mealy machines?

Qs-3) What is Mealy machine?

Qs-4) What is Moore machine? What do you understand by equivalence of moore
and mealy machines

Qs-5) Write Algorithm to decide emptiness?

4.12 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

4.13 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

Block-II

UNIT-V PUSHDOWN AUTOMATA

5.1 Learning Objectives

5.2 Pushdown Automata

5.2.1 Formal Definitions

5.2.2 Explanation of the transition function,

5.3 Configuration or Instantaneous Description (ID)

5.4 Nondeterministic Finite Automata (NFA)

5.4.1 Language accepted by a PDA

5.4.2 Equivalence of PDAs and CFGs

5.5 CFA to PDA

5.6 Some Useful Explanations

5.6.1 PDA and CFG

5.6.2 PDA to CFG

5.6.3 Inductive Hypothesis

5.6.4 Inductive Step

5.7 Conclusion

5.8 Check your progress

5.9 Answer Check your progress

5.10 Model Question

5.12 References

5.13 Suggested readings

5.1 LEARNING OBJECTIVES

This chapter gives the basic understanding Pushdown Automata, Formal Definitions,

Explanation of the transition function, Configuration or Instantaneous Description (ID),

Nondeterministic Finite Automata (NFA), Language accepted by a PDA. We also understand

Equivalence of PDAs and CFGs, CFA to PDA

.

5.2 PUSHDOWN AUTOMATA

Regular language can be characterized as the language accepted by finite automata.

Similarly, we can characterize the context-free language as the language accepted by a class

of machines called "Pushdown Automata" (PDA). A pushdown automation is an extension of

the NFA.

It is observed that FA have limited capability. (in the sense that the class of languages

accepted or characterized by them is small). This is due to the "finite memory" (number of

states) and "no external memory" involved with them. A PDA is simply an NFA augmented

with an "external stack memory". The addition of a stack provides the PDA with a last-

in, first-out memory management cpapability. This "Stack" or "pushdown store" can be used

to record a potentially unbounded information. It is due to this memory management

capability with the help of the stack that a PDA can overcome the memory limitations that

prevents a FA to accept many interesting languages like . Although, a PDA can

store an unbounded amount of information on the stack, its access to the information on the

stack is limited. It can push an element onto the top of the stack and pop off an element from

the top of the stack. To read down into the stack the top elements must be popped off and are

lost. Due to this limited access to the information on the stack, a PDA still has some

limitations and cannot accept some other interesting languages.

As shown in figure, a PDA has three components: an input tape with read only head, a finite

control and a pushdown store.

The input head is read-only and may only move from left to right, one symbol (or cell) at a

time. In each step, the PDA pops the top symbol off the stack; based on this symbol, the

input symbol it is currently reading, and its present state, it can push a sequence of symbols

onto the stack, move its read-only head one cell (or symbol) to the right, and enter a new

state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, - transitions are also allowed in which the

PDA can pop and push, and change state without reading the next input symbol or moving its

read-only head. Besides this, there may be multiple options for possible next moves.

5.2.1 FORMAL DEFINITIONS

Formally, a PDA M is a 7-tuple M =

where,

• is a finite set of states,

• is a finite set of input symbols (input alphabets),

• is a finite set of stack symbols (stack alphabets),

• is a transition function from to subset of

• is the start state

• , is the initial stack symbol, and

• , is the final or accept states.

5.2.2 EXPLANATION OF THE TRANSITION FUNCTION, :

If, for any , . This means intitutively that

whenever the PDA is in state q reading input symbol a and z on top of the stack, it can

nondeterministically for any i,

• go to state

• pop z off the stack

• push onto the stack (where) (The usual convention is that

if , then will be at the top and at the bottom.)

• move read head right one cell past the current symbol a.

• Final states are indicated by double circles and the start state is indicated by an arrow

to it from nowhere.

5.3 CONFIGURATION OR INSTANTANEOUS DESCRIPTION

(ID) :

• A configuration or an instantaneous description (ID) of PDA at any moment during its

computation is an element of describing the current state, the portion of

the input remaining to be read (i.e. under and to the right of the read head), and the

current stack contents. Only these three elements can affect the computation from that

point on and, hence, are parts of the ID.

• The start or initalconfiguartion (or ID) on input is . That is, the PDA

always starts in its start state, with its read head pointing to the leftmost input

symbol and the stack containing only the start/initial stack symbol, .

• The "next move relation" one figure describes how the PDA can move from one

configuration to another in one step.

Formally,

iff

'a' may be or an input symbol.

Let I, J, K be IDs of a PDA. We define we write I K, if ID I can become K after

exactly i moves. The relations and define as follows

I K

I J if such that I K and K J

I J if such that I J.

5.4 NONDETERMINISTIC FINITE AUTOMATA (NFA)

That is, is the reflexive, transitive closure of . We say that I J if the

ID J follows from the ID I in zero or more moves.

(Note : subscript M can be dropped when the particular PDA M is understood.)

5.4.1 LANGUAGE ACCEPTED BY A PDA M

There are two alternative definiton of acceptance as given below.

1. Acceptance by final state :

Consider the PDA . Informally, the PDA M is said to accept its

input by final state if it enters any final state in zero or more moves after reading its entire

input, starting in the start configuration on input .

Formally, we define L(M), the language accepted by final state to be

{ | for some and }

2. Acceptance by empty stack (or Null stack) : The PDA M accepts its input by empty

stack if starting in the start configuration on input , it ever empties the stack w/o pushing

anything back on after reading the entire input. Formally, we define N(M), the language

accepted by empty stack, to be

{ | for some }

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the

empty set i.e. F = Q .

Example 1 : Here is a PDA that accepts the language .

, and consists of the following transitions

The PDA can also be described by the adjacent transition diagram.

formally, whenever the PDA M sees an input a in the start state with the start symbol z on

the top of the stack it pushes a onto the stack and changes state to . (to remember that it

has seen the first 'a'). On state if it sees anymore a, it simply pushes it onto the stack. Note

that when M is on state , the symbol on the top of the stack can only be a. On state if it

sees the first b with a on the top of the stack, then it needs to start comparison of numbers

of a's and b's, since all the a's at the begining of the input have already been pushed onto the

stack. It start this process by popping off the a from the top of the stack and enters in state q3

(to remember that the comparison process has begun). On state , it expects only b's in the

input (if it sees any more a in the input thus the input will not be in the proper form of anbn).

Hence there is no more on input a when it is in state . On state it pops off an a from the

top of the stack for every b in the input. When it sees the last b on state q3 (i.e. when the

input is exaushted), then the last a from the stack will be popped off and the start symbol z is

exposed. This is the only possible case when the input (i.e. on -input) the PDA M will

move to state which is an accept state.

we can show the computation of the PDA on a given input using the IDs and next move

relations. For example, following are the computation on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs

using the transition function defined

 (using transition 1)

 (using transition 2)

(using transition 3)

(using transition 4)

(using transition 5)

 is final state. Hence ,accept. So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move

relations. For example, following are the computation on two input strings.

i) Let the input be aabab.

No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

Example 2 : We give an example of a PDA M that accepts the set of balanced strings of

parentheses [] by empty stack. The PDA M is given below.

 where is defined as

Informally, whenever it sees a [, it will push the] onto the stack. (first two transitions), and

whenever it sees a] and the top of the stack symbol is [, it will pop the symbol [off the stack.

(The third transition). The fourth transition is used when the input is exhausted in order to

pop z off the stack (to empty the stack) and accept. Note that there is only one state and no

final state.

The following is a sequence of configurations leading to the acceptance of the string [[] []]

[].

Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by

final state and empty stack- are equivalent in the sense that if a language can be accepted by

empty stack by some PDA, it can also be accepted by final state by some other PDA and vice

versa. Hence it doesn't matter which one we use, since each kind of machine can simulate the

other.Given any arbitrary PDA M that accpets the language L by final state or empty stack,

we can always construct an equivalent PDA M with a single final state that accpets exactly

the same language L. The construction process of M' from M and the proof of equivalence

of M & M' are given below.

There are two cases to be considered.

CASE I : PDA M accepts by final state, Let Let qf be a new state

not in Q. Consider the PDA where as well as the

following transition.

 contains and . It is easy to show that M and M' are

equivalent i.e.

L(M) = L()

Let L(M) . Then for some and

Then

Thus accepts

Conversely, let accepts i.e. L(), then

 for inherits all other moves except the last one from M. Hence

 for some .

Thus M accepts . Informally, on any input simulate all the moves of M and enters in its

own final state whenever M enters in any one of its final status in F. Thus accepts a

string iff M accepts it.

CASE II : PDA M accepts by empty stack.

We will construct from M in such a way that simulates M and detects

when M empties its stack. enters its final state when and only when M empties its

stack.Thus will accept a string iff M accepts.

Let where and X and

 contains all the transition of , as well as the following two transitions.

 and

Transitions 1 causes to enter the initial configuration of M except that will have its

own bottom-of-stack marker X which is below the symbols of M's stack. From this point

onward will simulate every move of M since all the transitions of M are also in .

If M ever empties its stack, then when simulating M will empty its stack except the

symbol X at the bottom. At this point, will enter its final state by using transition rule

2, thereby (correctly) accepting the input. We will prove that M and are equivalent.

Let M accepts . Then

 for some . But then

(by transition rule 1)

 (Since includes all the moves of M)

 (by transition rule 2)

Hence, also accepts .

Conversely, let accepts .

Then for some

Every move in the sequence

 were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the

input i.e.

5.4.2 EQUIVALENCE OF PDAS AND CFGS

We will now show that pushdown automata and context-free grammars are equivalent in

expressive power, that is, the language accepted by PDAs are exactly the context-free

languages. To show this, we have to prove each of the following:

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the same

language generated by G.

ii) Given any arbitrary PDA M there exists a CFG G that generates exactly the same language

accepted by M.

CHECK YOUR PROGRESS

True/False type questions

1) A pushdown automation is an extension of the NFA._________.

2) FA have limited capability.___________.

3) The langauge accepted by a class of machines called Pushdown Automata____________.

4) PDA does not accepts by empty stack.___________.

5) A PDA has Five components___________.

Answers-

1) True

2) True

3) True

4) False

5) False

5.5 CFA to PDA

We will first prove that the first part i.e. we want to show to convert a given CFG to an

equivalent PDA.

Let the given CFG is . Without loss of generality we can assume that G is in

Greibach Normal Form i.e. all productions of G are of the form .

 where and .

From the given CFG G we now construct an equivalent PDA M that accepts by empty stack.

Note that there is only one state in M. Let

, where

• q is the only state

• is the input alphabet,

• N is the stack alphabet ,

• q is the start state.

• S is the start/initial stack symbol, and , the transition relation is defined as follows

1.

For each production , .

We now want to show that M and G are equivalent i.e. L(G)=N(M). i.e. for any

. iff .

If , then by definition of L(G), there must be a leftmost derivation starting

with S and deriving w.

i.e.

Again if , then one sysmbol. Therefore we need to show that for any .

 iff .

But we will prove a more general result as given in the following lemma.

Replacing A by S (the start symbol) and by gives the required proof.

Lemma For any , and , via a leftmost derivative iff

 .

Proof : The proof is by induction on n.

Basis : n = 0

 iff i.e. and

iff

iff

Induction Step :

First, assume that via a leftmost derivation. Let the last production applied in their

derivation is for some and .

Then, for some ,

where and

Now by the indirection hypothesis, we get,

...(1)

Again by the construction of M, we get

 so, from (1), we get

since and , we get

That is, if , then . Conversely, assume that

 and let

 be the transition used in the last move. Then for some ,

and

 where and .

Now, by the induction hypothesis, we get

 via a leftmost derivation.

Again, by the construction of M, must be a production of G. [

Since]. Applying the production to the sentential form we get

i.e.

via a leftmost derivation.

Hence the proof.

Example : Consider the CFG G in GNF

S aAB

A a / aA

B a / bB

The one state PDA M equivalent to G is shown below. For convenience, a production

of G and the corresponding transition in M are marked by the same encircled number.

(1) S aAB

(2) A a

(3) A aA

(4) B a

(5) B bB

We have used the same construction discussed earlier.

5.6 SOME USEFUL EXPLANATIONS :

Consider the moves of M on input aaaba leading to acceptance of the string.

Steps

1. (q, aaaba, s) (q, aaba, AB)

2. (q, aba, AB)

3. (q, ba, B)

4. (q, a, B)

5. (q, ,) Accept by empty stack.

Note : encircled numbers here shows the transitions rule applied at every step.

Now consider the derivation of the same string under grammar G. Once again, the production

used at every step is shown with encircled number.

 S aAB aaAB aaaB aaabB aaaba

Steps 1 2 3 4 5

Observations:

• There is an one-to-one correspondence of the sequence of moves of the PDA M and

the derivation sequence under the CFG G for the same input string in the sense that -

number of steps in both the cases are same and transition rule corresponding to the

same production is used at every step (as shown by encircled number).

• considering the moves of the PDA and derivation under G together, it is also

observed that at every step the input read so far and the stack content together is

exactly identical to the corresponding sentential form i.e.

<what is Read><stack> = <sentential form>

Say, at step 2,

Read so far = a

stack = AB

Sentential form = aAB

From this property we claim that

 iff . If the claim is true, then apply with and we get

 iff

or iff (by definition)

Thus N(M) = L(G) as desired. Note that we have already proved a more general version of

the claim.

5.6.1 PDA and CFG

We now want to show that for every PDA M that accpets by empty stack, there is

a CFG G such that L(G) = N(M)

we first see whether the "reverse of the construction" that was used in part (i) can be used

here to construct an equivalent CFG from any PDA M.

It can be show that this reverse construction works only for single state PDAs.

• That is, for every one-state PDA M there is CFG G such that L(G) = N(M). For

every move of the PDA M we introduce a

production in the grammar

 where N = T and .

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).

But the reverse construction does not work for PDAs with more than one state. For example,

consider the PDA M produced here to accept the langauge

Now let us construct CFG using the "reverse" construction.

(Note).

Transitions in M Corresponding Production in G

We can drive strings like aabaa which is in the language.

But under this grammar we can also derive some strings which are not in the language. e.g

Therefore, to complete the proof of part (ii) we need to prove the following claim also.

Claim: For every PDA M there is some one-state PDA such that .

It is quite possible to prove the above claim. But here we will adopt a different approach. We

start with any arbitrary PDA M that accepts by empty stack and directly construct an

equivalent CFG G.

5.6.2 PDA to CFG

We want to construct a CFG G to simulate any arbitrary PDA M with one or more states.

Without loss of generality we can assume that the PDA M accepts by empty stack.

The idea is to use nonterminal of the form <PAq> whenever PDA M in state P with A on top

of the stack goes to state . That is, for example, for a given transition of the PDA

corresponding production in the grammar as shown below,

And, we would like to show, in general, that iff the PDA M, when started from

state P with A on the top of the stack will finish processing , arrive at state q and

remove A from the stack.

But we have to consider the more general transition rule as shown below.

With this, we are now ready to give the construction of an equivalent CFG G from a given

PDA M. we need to introduce two kinds of producitons in the grammar as given below. The

reason for introduction of the first kind of production will be justified at a later point.

Introduction of the second type of production has been justified in the above discussion.

Let be a PDA. We construct from M a equivalent

CFG

Where

• N is the set of nonterminals of the form <PAq> for and

and P contains the follwoing two kind of production

•

• If , then for every choice of the sequence

, , .

• nclude the follwoing production

•

• If n = 0, then the production is .

• For the whole excercise to be meaningful we want

• means there is a sequence of transitions (for PDA M), starting in

state q, ending in , during which the PDA M consumes the input string and

removes A from the stack (and, of course, all other symbols pushed onto stack in A's

place, and so on.)

• That is we want to claim that

• iff

• If this claim is true, then let to get iff

 for some . But for all we have as production in G.

Therefore,

• iff i.e. iff PDA M accepts w by empty

stack or L(G) = N(M)

• Now, to show that the above construction of CFG G from any PDA M works, we

need to prove the proposed claim.

• Note: At this point, the justification for introduction of the first type of production (of

the form) in the CFG G, is quite clear. This helps use deriving a string

from the start symbol of the grammar.

• Proof : Of the claim iff for some ,

 and

The proof is by induction on the number of steps in a derivation of G (which of

course is equal to the number of moves taken by M). Let the number of steps taken

is n.

• he proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part

• If then .

• Basis is n =1

Then . In this case, it is clear that . Hence, by

construction is a production of G.

5.6.3 INDUCTIVE HYPOTHESIS :

•

• 5.6.4 INDUCTIVE STEP :

• For n >1, let w = ax for some and consider the first move of the

PDA M which uses the general transition

= . Now M must remove

 from stack while consuming x in the remaining n-1 moves.

• Let , where is the prefix of x that M has consumed when

 first appears at top of the stack. Then there must exist a sequence of states in M (as

per construction) (with), such that

• So, applying inductive hypothesis we get

• , . But corresponding to the original

move in M we have added the following

production in G.

• We can show the computation of the PDA on a given input using the IDs and next

move relations. For example, following are the computation on two input strings.

i) Let the input be aabb. we start with the start configuration and

proceed to the subsequent IDs using the transition function defined

• (using transition 1)

• (using transition 2)

• (using transition 3)

we can show the computation of the PDA on a given input using the IDs and next move

relations. For example, following are the computation on two input strings.

i) Let the input be aabab.

No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of the string [[] []]

[].

Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by

final state and empty stack- are equivalent in the sense that if a language can be accepted by

empty stack by some PDA, it can also be accepted by final state by some other PDA and vice

versa. Hence it doesn't matter which one we use, since each kind of machine can simulate the

other.Given any arbitrary PDA M that accpets the language L by final state or empty stack,

we can always construct an equivalent PDA M with a single final state that accpets exactly

the same language L. The construction process of M' from M and the proof of equivalence

of M & M' are given below.

There are two cases to be considered.

CASE 1 : PDA M accepts by final state, Let . Let be a new

state not in Q. Consider the PDA where as well as

the following transition.

 contains and . It is easy to show that M and are

equivalent i.e. .

Let . Then for some and

Then .

Thus accepts .

Conversely, let accepts i.e. , then

 for some . inherits all other moves except the last one from M. Hence

 for some .

Thus M accepts . Informally, on any input simulate all the moves of M and enters in

its own final state whenever M enters in any one of its final status in F. Thus accepts

a string iff M accepts it.

CASE 2 : PDA M accepts by empty stack.

we will construct from M in such a way that simulates M and detects

when M empties its stack. enters its final state when and only when M empties its

stack.Thus will accept a string iff M accepts.

Let where and and

contains all the transition of , as well as the following two transitions.

 and

Transitions 1 causes to enter the initial configuration of M except that will have its

own bottom-of-stack marker X which is below the symbols of M's stack. From this point

onward M' will simulate every move of M since all the transitions of M are also in .

If M ever empties its stack, then when simulating M will empty its stack except the

symbol X at the bottom. At this point, will enter its final state by using transition rule

2, thereby (correctly) accepting the input. we will prove that M and are equivalent.

Let M accepts . Then

 for some . But then,

 (by transition rule 1)

 (since include all the moves of M)

 (by transition rule 2)

Hence, also accepts .

Conversely, let accepts .

Then for some Q .

Every move in the sequence

 were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the

input i.e.

 .

5.7 CONCLUSION

This module explains about the basic understanding Pushdown Automata, Formal

Definitions, Explanation of the transition function, Configuration or Instantaneous

Description (ID), Nondeterministic Finite Automata (NFA), Language accepted by a PDA,

Equivalence of PDAs and CFGs, CFA to PDA.

5.8 CHECK YOUR PROGRESS

Fill in the blanks:

1) A PDA has __________ components.

2) A__________________ is an extension of the NFA. Pushdown automation

3) A PDA M is a 7-tuple M _______________

4) _______________________can be used to record a potentially unbounded information.

5) The Grammer accepted by CFG is______________

5.9 ANSWER CHECK YOUR PROGRESS

1) Three

2) Pushdown automation

3)

4) "Stack" or "pushdown store"

5) PDA

5.10 MODEL QUESTION

Qs-1) What is PDA explain with example?

Qs-2) How many components are there in PDA explain?

Qs-3) How many tuples are there in PDA write all of them?

Qs-4) What are two language accepted by PDA explain?

Qs-5) What is the full form of CFG And PDA?

5.12 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

5.13 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

UNIT-VI DETERMINISTIC PUSHDOWN AUTOMATA

(PDA)

6.1 Learning Objectives

6.2 Deterministic Pushdown Automata (DPDA) and Deterministic Context-free Languages

(DCFLs)

6.3 DPDAs and FAs: DCFLs and Regular languages

6.4 CFLs and DCFLs

6.5 Standard forms of DPDAs

6.6 Acceptance by final state and empty stack

6.7 Unambiguous CFGs and DPDAs

6.8 Parsing and DPDAs

6.9 Conclusion

6.10 Check your progress

6.11 Answer Check your progress

6.12 Model Question

6.13 References

6.14 Suggested readings

6.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Deterministic Pushdown Automata (DPDA)

and Deterministic Context-free Languages (DCFLs) along with the concepts of DPDAs and

FAs: DCFLs and Regular languages. It discusses CFLs and DCFLs, Standard forms of

DPDAs, Acceptance by final state and empty stack. We also understand the deep insights of

Unambiguous CFGs and DPDAs. Parsing and DPDAs are also elaborated in the chapter.

6.2 DETERMINISTIC PUSHDOWN AUTOMATA (DPDA) and

DETERMINISTIC CONTEXT-FREE LANGUAGES (DCFLs)

Pushdown automata that we have already defined and discussed are nondeterministic by

default, that is, there may be two or more moves involving the same combinations of state,

input symbol, and top of the stock, and again, for some state and top of the stock the machine

may either read and input symbol or make an - transition (without consuming any input).

In deterministic PDA, there is never a choice of move in any situation. This is handled by

preventing the above mentioned two cases as described in the definition below.

Definition: Let be a PDA. Then M is deterministic if and only if

both the following conditions are satisfied.

1. has at most one element for any and (this

condition prevents multiple choice for any combination of)

2. If and for every

(This condition prevents the possibility of a choice between a move with or without

an input symbol).

A language L is said to be deterministic context-free (DCFL) if there is some DPDA

accepting L.

Example: The language is a DCFL. The following DPDA accepts L

The moves satisfying the conditions given in the definition. As the PDA reads the first half of

the input, it remains in the start state q0and pushes the input symbols on the stock. When it

reads the symbol it changes the state from q0 to q1without changing the stock. On state

q1 it simply matches input symbols with the stock symbols and erases in case of a match.

That is, the symbol the moves satisfying the conditions given in the definition. As the PDA

reads the first half of the input, it remains in the start state q0 and pushes the input symbols

on the stock. When it reads the symbol , it changes the state from q0 to q1 without changing

the stock. On state q1 it simply matches input symbols with the stock symbols and erases in

case of a match. That is, the symbol in tells the m/c when to start looking for Once

the input is extended, then the symbol z0 on stock indicates a proper match for the input to

be and hence it accepts by entering state q2, which is a final state.

Example: Consider the language In this case there is no way to

determine when to start comparison because of absence of the symbol in the middle/

The PDA in this case has to guess non-deterministically when the middle symbol comes in

the input.

6.3 DPDAs and FAs: DCFLs and REGULAR LANGUAGES

Equivalence of DFA & NFA proves that non determination does not add power in case

of FA s. But it is not true in case of PDA s, i.e., it can be shown that nondeterministic PDA s

are more powerful than DPDA s. In fact, DCFL s is a class of languages that lies properly

between the class of regular languages and CFL s. The following discussion proves this fact.

Theorem: If L is a regular language, then there is some DPDA M such that .

Proof: Since L is regular, then exists a DFA D such that .

The PDA M can be constructed from D (with an additional stock) that simulates all the

moves of D on any input just by ignoring its stock. That is if

 when Such that It is easy to see

that

Again, the language can be shown to be non-regular by using pumping lemma. But,

the DPDA presented in the example above accepts this language.

Hence the class of DCFL s properly includes the class of regular languages.

6.4 CFLs and DCFLs

We now show that class of languages accepted by DPDA s is properly included in the CFLS.

First, note that, every DCFL is a CFL since every DPDA is a special case of a PDA.

Now, there are two ways to prove the proper inclusion- direct method or indirect method.

In the direct method we need to show that there exists a language which is CFL but

not DCFL. We have already argued intuitively that the language is a CFL but not

a DCFL. We will show later that there is a CFL which is not a DCFL.

The indirect method follows the following steps to prove the fact-

First, prove the fact that DCFL s are closed under complement.

But, it is fact that CFL 's are not closed under complement.

Hence, there must exist a CFL that is not s DCFL .

6.5 STANDARD FORMS of DPDAs

It is possible to put every DPDA in some standard form where the only stack operations are

to erase the top symbol without putting anything else on the stack; or to push a single symbol

onto the stack on top of the symbol that was previously on top; or to leave the stack

unchanged. The following two lemma establishes this fact.

Lemma 1: If L is a DCFL, then L=L(M) for some such that

if , then

Proof: Let the accepts L and has a

move with The DPDAM simulates this move by using some

more states and a sequence of moves as follows.

 Let

 Let are nonaccepting states in M (which is not in M'). The move

 in M' is redefined as in M.

Then the following moves are introduced in M.

 for .finally introduce,

That is, the DPDA M enters the state p after replacing X with (after starting at

state q, on input a and with X on the top of the stack). But ---- it now takes a sequence of

moves (number of moves to be precise) for the same.

Lemma 2: If L is a DCFL, then L=L(M) for some such that

if ,then is either or of the form XY for some

Proof: Let for some DPDA.

without loss of generality assume that M'

satisfies Lemma 1 given above. We now construct M from M' as follows.

1. If M' pops its stock, then M pops its stock and remembers the symbol popped (in its

finite control) by the move

 if, is in M'.

2. If M' changes its top symbol of the stock, then M remembers this without changing its

top of the stock that is .

 if is in M'.

3. M pushes a symbol onto its store whenever the stock size of M' increases, that

is

 if is in M'

It can be shown by induction s that L(M)=L(M')

Theorem: The language is not a DCFL.

Proof: Assume for contradiction that there is some DPDA accepting

L. Without loss of generality, we can assume that P is in standard form, i.e., every move

of P is either of the form

or one of the forms

Where and .Note that, for P to reject an input string it may

not read the whole string (it may enter a configuration at which no transition is defined or it

may execute a never-ending sequence of -moves). On the other hand if P accepts a

string , then it must eventually read the whole string.

We know that if Thus is also in L.

Since P accepts both x and , the sequence of moves it makes while processing the first

part x of the string must be exactly similar to that it makes on input x irrespective of

whether x is followed by any other string or not. This is because of the fact that P is

deterministic in nature.

After processing x at the stock content of P be with for some . Now, if P starts

reading subsequent symbols from some string y (i.e. P may be assumed to start with the string

xy) and finishes reading it, then let the stock content be . We are sure that ,

since P must still be able to process some longer string with xy as the prefix. So, we have

 for some

In the above,

Consider the string y' such that the length of the resulting stack content is minimum i.e.

 for some , then

So, once P reaches the configuration after processing xy', it cannot remove any

symbol from the stock (since length cannot be reduced further) in the subsequent moves.

Because a move of a DPDA in standard from that involves removing a single symbol from

the stack reduces the height of the stack.

Let for some and . Since we may consider any string in xy'

there are infinite number of strings of the form xy . But the set of states and stack

symbols, , respectively of P are infinite. Hence there must exist two different strings

u=xy' and v=xy' in . Such that

 and

We also know that the symbol X cannot be removed from the stack once P has entered this

configuration.

Therefore, for some , if we consider the strings uZ and vZ, then we must have

So, either both uZ and vZ are accepted or both are rejected by P. But since u and v are

distinct, for some z one may be in L while other is not. This leads to a contradiction. (Since P

should have accepted only one of these two, which is in L and the other should have been

rejected.)

Hence our assumption that P accepts L must be false.

6.6 ACCEPTANCE BY FINAL STATE AND EMPTY STACK

We have already proved in case of NPDA that the two methods of acceptance (by empty

stack and final state) are equivalent. That is, a language L has an NPDA that accepts by final

state if and only if some NPDA accepts it by empty stack. But this is not true for DPDAs.

The language recognizing capability of DPDA s that accept by empty stack is much less than

that of the other. This is proved in the following lemma.

Lemma1: If a language L is accepted by a DPDA by empty stack, then L has the “prefix

properly”.

Before giving the proof of the above lemma we first define the “prefix properly” of a

language.

Definition: A language L is said to have the prefix properly if whenever , no proper

prefix of x is in L

Example: The language has the prefix properly; since if , then no proper

prefix of can be in L. This is because the symbol c identifies the mid-point of the

string . In many proper prefixes of , the symbol c will not be the mid-point of that

prefix.

Again, consider the language It is quite obvious that there are infinitely many pairs of

stings in one of which is a prefix of the other e.g., both are in and

 is a proper prefix of . This is a regular language and still not accepted by any DPDA by

empty stack.

It is to be noted that prefix property is not a severe restriction. Because we can always

introduce a special end marker, say , not in at the end of every string of a language L to

convert it to a language with prefix property. That is is a language with

prefix property.

Assume for contradiction that the language L accepted by

the DPDA by empty stack does not have the prefix property. Hence,

there must exist two strings x and xy (with) such that P accepts both. Then we have

 , since .

So, while processing the string xy, the DPDA must arrive at the configuration given below

because of its deterministic property.

From the point onward the DPDAP cannot move since it has already emptied its stock

and . Hence, xy is not accepted by P as assumed.

The lemma 2 given below shows that every language accepted by a DPDA by

some DPDA that accepts by final state.

Lemma 2: If L is accepted by some DPDA P that accepts by empty stock, then there is

some DPDA P'that accepts by final state such that L=L(p').

Proof: If accepts L by empty stack.

 from P which simulate the behaviour of P as follows.

 such that .

 Contains all the moves of P and also the following.

1.

2.

By using rule 1, P' simply enters the initial configurations of P pushing Z0above the bottom

of stock marker Z0'. Then P' simulates the behaviour of P on any input string.

When P accepts

a string, it empties its stock and at that point P0' would expose the bottom of stock marker Z0'

and enters the final state P' by using rule 2. So, it is obvious that, an input string X is accepted

by P iff it is accepted by P'.

The converse of lemma 2 is not necessarily true. But it can be shown that every language that

has the prefix property and is accepted by a DPDA with final state is also accepted by

some DPDA that accepts by empty stock, as given in the lemma 3.

Lemma 3: If a language L has the prefix property and is accepted by a DPDAP by final state,

then there is some DPDA P' that accepts by empty stock such that L=L(P').

Proof: Let for DPDA

 that accepts by final state. We construct P' from P as follows.

P' contains all the moves of P besides the following.

1. The first move of P' is to go to the initial configuration of P by pushing the start

symbol Z0' of P'on top of the stock. From this point onward P' simulates the behavior

of P (using P's moves) on any input string. Even if P empties its stack without

accepting the input, P' will not empty its stock because of the new start symbol that

was pushed on to the top of the stock initially.

2. If P enters an accepting state, P' simply enters the state P'.

3. On state P' , the DPDA P' erases all the stock symbols without bothering the input

eventually emptying its stock. So, P' accepts a string X where P accepts it and vice

versa.

Now lemma 1,2,3 together gives us the following theorem.

Theorem: A language L is accepted by a DPDA by empty stock if and only if it has the prefix

property and is accepted by some DPDA by final state.

CHECK YOUR PROGRESS

True/False type questions

1) Every DCFL is a CFL since every DPDA is a special case of a PDA.____________

2) In deterministic PDA, there is never a choice of move in any situation__________.

3) A parser is an algorithm to determine whether a given string is in the language generated

by a given CFG_____________

4) Pushdown automata that we have already defined and discussed are deterministic by

default_____________

5) DPDA does involve backtracing__________

Answers-

1) True

2) True

3) True

4) False

5) False

6.7 UNAMBIGUOUS CFGs and DPDAs

It is interesting to note the language accepted by a DPDA must have an unambiguous

grammar. We first prove it for a DPDA that accepts by empty stock and then extend it to

a DPDA that accepts by final state.

Theorem: If L is accepted by some DPDAM that accepts by empty stock, then L must have

an unambiguous CFG.

Proof: In the construction of an equivalent CFG G for any given DPDAM (that has been

discussed in the context of equivalence of PDAs and CFGs) if assume that M is deterministic

(that accepts by empty stock), then the resulting grammar G generated can be shown to have

unique leftmost derivation for every string (thus, proving that G is unambiguous).

If M accepts a string w by empty stock, then because of deterministic nature of M there must

be a unique sequence of moves and M cannot move once it empties its stock. If this sequence

of moves is known, we can determine the exact choice of production rules in a leftmost

derivation of w under G. Even though there may be many different rules in G for the

move. of M, only one of those will be consistent with the

execution of M that actually drive w.

We can now show that if L is accepted by some DPAM that accepts by final state, then L has

an unambiguous grammar.

Consider the language for some symbol which is not a terminal symbol of M. Since L' has

the prefix property. It is accepted by a DPDAM' that accepts by empty stock and, thus, there

exists an unambiguous CFG G' with L=L(G’) (by the above theorem). We construct a CFG

G from G' such that L=L(G) as follows.

G and G' are exactly same except that we introduce a new nonterminal $ and a new

production in G. Now, if , then G derives the string following

exactly the same sequence of steps except at the last step, when G uses the production

 to get rid of the symbol $. Since G' is unambiguous, G must also be unambiguous.

6.8 PARSING and DPDAs

The context-free languages are of great practical importance, especially, in defining

programming languages. For example, we can use CFGs to model the syntax of arithmetic

expressions, block structures in programming languages, etc. A compiler for such a

programming language must then embody a parser to carry out the process of analysing a

given input string in order to determine its grammatical structure with respect to the given

grammar. That is, a parser is an algorithm to determine whether a given string is in the

language generated by a given CFG and, if so, to construct a purse tree for the string (for

further use at a later stage).

We have already seen a cubic-time pursing algorithm (based on dynamic programming

technique) that works for any given context-free language. For almost all practical purposes it

is considered to be two slow. The most successful parser which have been developed in the

recent past are based on the idea of a PDA. Since PDAs and CFGs are found to be equivalent

one can develop a parser for CFLs that behave like PDAs. But because of the

nondeterministic nature of PDAs, they are still not of immediate practical use in parsing. The

parsing process may involve back tracking because of the nondeterministic steps and hence

would lead to inefficiency.

On the other hand, a parser rooted in the idea of a DPDA does not involve backtrack----ing

and hence expected to work efficiently. Even though the capability of DPDAs are limited in

the sense that they accept DCFLs which is a proper subset of CFLs, it turns out that the

syntax of most programming languages can be modelled by means of DCFLs. One of the

main motivations for studying DCFLs lies in the fact that- they can describe the syntax of

programming languages and they can be parsed efficiently using DPDAs. To produce a

compiler for a given programming language the syntax is required to be described by

some CFG in restricted form that generate only DCFLs. There are different kinds of

such CFGs in restricted forms. The LL- and LR-grammars are two important classes in this

category.

6.9 CONCLUSION

After reading this module you will know the Deterministic Pushdown Automata (DPDA) and

Deterministic Context-free Languages (DCFLs) along with the concepts of DPDAs and FAs:

DCFLs and Regular languages. It discusses CFLs and DCFLs, Standard forms of DPDAs,

Acceptance by final state and empty stack. It presents the deep insights of Unambiguous

CFGs and DPDAs. Parsing and DPDAs are also elaborated in the chapter.

6.10 CHECK YOUR PROGRESS

Fill in the blanks:

1) The full form of DPDA is________________________

2) Every DCFL is a __________ since every DPDA is a special case of a _____.

3) A parser is an___________ to determine whether a given string is in the language

generated by a given CFG.

4) The parsing process may involve ______________ because of the nondeterministic steps

and hence would lead to inefficiency.

5) NPDA accepts it by _______________

6.11 ANSWER CHECK YOUR PROGRESS

1) Deterministic push down automata.

2) CFL and PDA.

3) Algorithm.

4) Back tracking.

5) Empty stack.

6.12 MODEL QUESTION

Qs-1) What is DPDA and DCFL? Explain their difference with suitable example.

Qs-2) What is UNAMBIGUOUS CFGs? Explain.

Qs-3) What do you understand by determinism? What are two necessary condition for

determinism?

Qs-4) What is CFL and DCFL?

Qs-5) For regular language, then there is some DPDA explain?

6.13 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

6.14 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

UNIT-VII SIMPLIFICATION OF CFG

7.1 Learning Objectives

7.2 Chomsky Normal Form (CNF)

7.3 Greibach Normal Form (GNF)

7.4 Conclusion

7.5 Check your progress

7.6 Answer Check your progress

7.7 Model Question

7.8 References

7.9 Suggested readings

7.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Simplification of CFG. It explains Chomsky

Normal Form (CNF) and Greibach Normal Form (GNF) through various theorems, lemmas

and step-wise elaborated solved examples.

7.2 CHOMSKY NORMAL FORM (CNF)

A CFG is in Chomsky Normal Form (CNF) if all production are of the

form

A BC or A a

Where A, B, C N and a .

Note that since -production is not allowed, a CFG in CNF cannot generate the empty

string .

Theorem : For any CFG there is a CFG in Chomsky

normal form such that L(G') = L(G)-{ }.

Proof : Without loss of generality we can assume that G doesnot contain any -production,

unit production and useless symbols. (Even if it contains, we can use the procedures already

described to remove all those).

We use the following procedure to construct from G.

• and are suspects of N and P respectively.

• For each terminal , introduce a new non terminal in and

production in . and replace all occurrences of a on the right-hand sides of

old productions (except productions of the form , i.e. where rhs is only one

terminal symbol, a with .

• After this step, all productions in will be of the form

 or , where . (K is greater than 2 because

unit productions are already eliminated)

• Clearly, the language generated by this new grammar is not changed; it just takes one

more steps than before to generate a terminal symbol.

• For all those productions with , introduce a new non-

terminal C in and replace this productions with two new productions in .

and .

• Once again, it is easy to see that this transformed grammar generates the same

langauge; it just takes one step more than before to generate a terminal string.

• we repeat the above step until the right-hand sides of every production in are of

length at most 2.

• The resulting grammar is now in CNF and

clearly .

Example : Consider the CFG : generating the language . we

will construct a CNF to generate the language i.e. .

Solutions : We first eliminate -productions (generating the language) using

the procedure already described to get .

Step 1 : Introduce nonterminals A, B and replace these productions

with

Step 2 : Introduce nonterminal C and replace the only production (which is not

allowable form in CNF) with and

The final grammar in CNF is now

S AC | AB

C SB

A a

B b

CHECK YOUR PROGRESS

True/False type questions

1) A CFG in CNF cannot generate the empty string ._________

2) A CFG is in Chomsky Normal Form (CNF) if all production are of the

form

A BC or A a_____________

3) The full form of CFG is Context full grammer.____________

4) The full form of GNF is GREIBACH NORMAL FORM._____________

5) For every CFG with , there is no equivalent

CFG in CNF.________

Answers-

1) True

2) True

3) False

4) False

5) True

7.3 GREIBACH NORMAL FORM (GNF)

A CFG is in Greibach normal form if all productions in P are of the form

for some , where and .

We will now show that every CFG can be transformed to an equivalent CFG in GNF. We first produce
two lemmas which help proving this fact.

Given any CFG G containing some left-recursive productions , we can construct an

equivalent CFG removing those left-recursive productions by right-recursive productions.

The following lemma proves this fact.

Lemma 1 : Let be CFG. Let be the set of all left-

recursive A-productions and be the remaining A-producitons in G.

There is a CFG , where and contains all

productions in P except the left-recursive A-productions and also contains the following

additional productions

such that

Proof : We first show that L(G) L(G ').

 are the only productions whcih are in G but not in . Consider a

leftmost derivation in G that uses a sequence of productions from this set. In such a case, the

leftmost nonterminal A must eventually be disposed off by using a production of the

type , later on, for some . That is, we have a derivation as shown below

The same derivation can be achieved in as follows:

Hence any derivation in G is also a derivation in G' and so L(G) L(G').

To show that L(G') L(G), we need to follow just the reverse process of the above.

This shows that L(G)=L(G').

Lemma 2 : Let be a CFG. Let A and be

the set of all B-productions in P. There is a CFG where

such that

Proof : We first show that . It is clear that is the only production

in G not in G'. If a derivation in G uses this production, then the nonterminal B must

eventually be disposed off, later on, by using a production of the form , .

That is, we have the derivation

We can simulate this derivation in as follows

which takes one step less than the previous one.

Hence any derivation in G is also, a derivation in and so .

Conversely, if is used (which is not in G) in a derivation in , then the

derivation will be of the form

The production , are the only producitons which are in but not in G.

We can now simulate the above derivation in G as follows.

Hence any derivation in is a derivation in G. and so .

Hence the proof.

Theorem : For every CFG with , there is an equivalent

CFG in CNF.

Proof : Without loss of generality, assume that G is in Chomsky normal form. Let the number of

nonterminal in N be M. The following steps construct the equivalent CFG from G.

• The first step is to rename the nonterminals in N so that each one has a subscript,

starting with 1upto m. So, the set of the nonterminals is now . This
step, certainly doesnot change the resulting language.

• The second step is to process the productions in P so that they satisfy the "Increasing
Nonterminals Property" (INP) defined as follows:

• INP is said to be satisfied to be satisfied, if all productions are in form

 or , where and .

• To enforce this property (INP) we start with -productions. Since G is in CNF, all -

productions are of the form or

• The first one satisfies the property. The second one also satisfies it, unless i =1.

When i =1, the production is of the form which is a left-recursive one and we

can apply lemma 1 to eliminate left-recursion by introducing a new variable , say . So,
we have the productions before application of Lemma 1

•

• Since G is in CNF, each is some and each must begin with , j >1 or

• We apply lemma 1 introducing the new nonterminal and the production obtained
from above after application of lemma 1 are

•

• and

All the above -productions are of the form or , where

 and

And the rhs of all - productions start with some where .

So, the resulting grammar, with the new set of productions, say , satisfies the INP.

• Consider the processing of -productions to be the basis case

• Assume that we have processed - through -productions , this way ,

introducing new nonterminals through . That, all

these productions satisfy INP is the inductive hypothesis.

• We now process -productions as the inductive step. Since G is in CNF , all -

productions are of the form or the first one satisfies the INP. The

second one doesnot satisfy the property whenever . Consider

 with . By induction hypothesis , all -production satisfy INP, thus of

form or with and . Now, applying lemma 2 to

replace with the right hand side of Ai-productions to produce (this
satisfies INP)

• and

If , we again replace by the rhs of -production.

• After atmost k-iterations, all -productions will be of the form

•

 with ,
• The first and the third productions satisfy the INP. The second one doesnot satisfy it,

because it is self recursive .

• Apply lemma 1 again, introducing a new nonterminal, , to enforce the INP, exactly in
a similar way as we did earlier . So, the resulting productions will satisfy the INP.

• Hence, if we continue to process upto Am-productions, the resulting grammar will satisfy
the INP (as proved by induction, above).

• There may be atmost 2m nonterminals in now,

namely .

• The third step is to process all these productions, starting with -produtcions down

to -production, to get the equivalent CNF . m is the highest subscript of any

nonterminal . So, by INP, all Am-productions are of the form ,

and . Thus this production, is in GNF already.

• Consider the -productions.

• By INP all -productions must be of the form

• (already in GNF)

• and where

• we now apply lemma 2 to replace Am(in the rhs) with the right-hand side of Am-

production given above. This gives us -productions of the form

 where

Both type of production now satisfy GNF property.

we inductively process down to the lowest subscripted nonterminal applying lemma 2

wherever necessary.

All productions now satisfy the GNF property i.e. of the form

since we applied either lemma 1 or lemma 2 for any intermediate transformation the resulting

grammar, say , must be equivalent to G i.e. .

Example : A BB B AC | a C AB | BA | a . We will construct an equivalent CFG

in GNF.

Step 1: Renaming the nonterminal, we get

Step 2 : -productions already satisfy INP.

Process - and -productions to enforce the INP.

First consider -productions:

Apply lemma 2 to obtaining . Now apply lemma 1 to eliminate

left-recursion

We get

which satisfy the INP property.

The resulting grammar is

Next consider -productions. Applying lemma 2 to we get

Applying lemma 2 again on the first two -productions above we get

Now, all productions satisfy the INP.

The resulting grammar is:

Step 3: All -productions and -productions are already in GNF. Apply lemma 2 to -

productions, to get .

Similarly, applying lemma 2 to -production we get

All the productions are in GNF now. So, the resulting equivalent grammar in GNF is

7.4 CONCLUSION

This module explains about the basic understanding of Simplification of CFG. It discusses

Chomsky Normal Form (CNF) and Greibach Normal Form (GNF) with various theorems,

lemmas and elaborated solved examples.

7.5 CHECK YOUR PROGRESS

Fill in the blanks:

1) The Full form of CFG is ________________________

2) The full form of GNF is_________________________

3) The Greibach normal form if all productions in P are of the form_____________

4) The Full form of CNF is____________

5) A CFG_________________ is in Chomsky Normal Form (CNF) if all production are of

the form

7.6 ANSWER CHECK YOUR PROGRESS

1) Context free Grammer

2) Greibach normal form

3)

4) Chomsky Normal Form

5)

7.7 MODEL QUESTION

Qs-1) What is CNF and what are steps for CNF to be in CFG?

Qs-2) What is GNF and what are steps for CNF to be in GNF?

Qs-3) Construct an equivalent CFG in GNF?

Qs-4) What is INP and wHen it is said to be satisfied?

Qs-5) For any CFG there is a CFG in Chomsky

normal form such that L(G') = L(G){ }explain?

7.8 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

7.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

https://nptel.ac.in/courses/106/103/106103070/

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

UNIT-VIII CONTEXT FREE LANGUAGES

8.1 Learning Objectives

8.2 Pumping Lemma for Context Free Languages (CFLs)

8.3 Closure Property of Context Free Languages (CFLs)

8.4 Some Decision Algorithms for CFLs

8.4.1 Testing Emptiness

8.4.2 Testing Membership

8.4.3 CYK Algorithm to decide membership in CFL

8.5 Testing Finiteness of a CFL

8.5.1 Decision algorithm for testing finiteness of a CFL

8.6 Conclusion

8.7 Check your progress

8.8 Answer Check your progress

8.9 Model Question

8.10 References

8.11 Suggested readings

8.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Context Free Languages (CFLs). It explains

Closure Property of Context Free Languages (CFLs), Some Decision Algorithms for CFLs

and Testing Finiteness of a CFL through various theorems, lemmas and step-wise elaborated

solved examples.

8.2 PUMPING LEMMA FOR CONTEXT FREE LANGUAGES (CFLs)

There is a pumping lemma for CFLs similar to the one for regular language. It can be used in

the same way to show that certain languages are not context-free.

Informally, the pumping lemma for CFLs states that for every CFL L, every sufficiently long

string can be subdivided into five substrings such that the middle three substrings are not too

long, the second and fourth are not both empty, and if these two substrings such that the

middle and fourth are not both empty, and if these two substrings are pumped simultaneously

zero or more times, then the resulting string will always belong to L.

Theorem (pumping lemma for CFLs):

Let L be any CFL. Then there is a constant n > 0, depending only on L, such that every

string of length at least n can be as z = uvwxy such that

Proof : Let G be a CFG in Chomsky Normal Form generating . Let the number of

nonterminals in G is K and let the constant of pumping lemma . We will now show that

all strings in L with length n or greater can be decomposed to satisfy the conditions of the

pumping lemma. Let be such a string i.e. or , and . Since

, then height (depth) of the parse tree for is at least k + 1. Hence, there is a path of

length at least k + 1. in the parse tree for . Let p be a path of maximal length from root S to

a leaf of the parse tree. Then P must contain at least k + 2 nodes, all of which are labelled by

non-terminals except the leaf node which is labelled by a terminal symbol. Hence, there is at

least k + 1 non-terminals in that path and since then and only k non-terminals in G, some

variable must occur more than once on the path. We select R to be a nonterminal that repeat

among the lowest k + 1 non-terminal on this path. To find the lowermost occurrence of R we

follow the path up from the leaf keeping track of the labels encountered. Of the first k + 2

nodes only the leaf has a terminal label. The remaining k + 1 node cannot have distinct

nonterminal labels and hence we simply pick the first repetition of any non-terminal on that

path and call it R.

Figure 1

We divide into uvwxy according to the figure given above. The derivation of can be

given as follows

Clearly, we have two subderivations

 and

The first one corresponds to the subtree rooted at the upper occurence of R and the second

one corresponds to the subtree rooted at the lower occurence of R. Both these subtree are

generated by the same nonterminal R, so we may substitute one for the ohter and still obtain a

valid parse tree. Replacing the larger by the smaller generates the string uwy and

hence . In this case, the upper occurence of R generates w directly using

 instead of generating vwx using . This is shown in the middle

figure.Similarly, replacing ths smaller subtree by the larger one repeatedly, as shown in the

last figure, gives of parse trees for the strings at each i >1. That establishes

that .

We now show that condition (i) and (ii) in the pumping lemma are satisfied by this

decomposition. The subderivation must begin with a rule of the form R AB. The

second occurence of R is derived from either A or B. If it is derived from A, then the

derivation can be written

The string t is non-empty since it is obtained by a derivation from a non terminal in a CNF

form grammar. Hence must be non-empty. If the second occurrence of R is derived

from B, a similar argument shows that v is non-empty. Hence, |vx| >0, giving condition (i).

The stable rooted at the upper occurrence of R generates vwx. But this R is the first repetition

of a variable in the longest path p in the parse tree starting from a leaf. i.e. both occurrence

of R fall within the bottom k +1 variables on the path. Hence the subtree rooted at the upper

occurrence of R has depth (or height) at most k +1. A tree of the height can generate a string

of length at most or less. Therefore , giving condition (ii).

This completes the proof.

Example: The language is not context-free.

Proof: We apply the pumping lemma to prove it. Assume, for contradiction , that L is a CFL.

Let n be the constant of the lemma. consider the string . Evidently,

 and .

Therefore, according to the Lemma, there exists substrings u, v, w, x, y such

that s = uvwxy and the following hold.

1.

2.

3.

vxy cannot start with some a, span all n b's, and finish with some c - condition (ii) above

prohibits this.

We now consider all other possibilities of occurence of vxy in S.

Case 1 : vxy occur completely within the leading an symbols. Then pumping up once yields

the string , where (since number of a's gets increased) .

Thus, contradicting the lemma.

Case 2 : If vxy occur completely within the middle or trailing symbols, then we can

apply exactly similar arguments as in case 1 to arrive at contradictions.

Case 3 : If vxy occur partly in the an and partly in the , then pumping up once will yield a

string that either contains more a's than c's and more b's than c's or contains some a's

after bb's. In both cases, the resulting string is not in L and is a contradiction.

Case 4: If vxy occur partly in the and partly in the then we can apply exactly similar

arguments as in case 3 to arrive at a contradiction.

These are the only possible cases to divide the string into substrings as per the lemma and in

every case there is contradiction. Hence, L is not a CFL.

Example: is not context-free.

Proof: Assume contradiction that L is a CFL. There is a constant n>0 such that any string

in L of length at least n can be pumped according to the pumping lemma.

Consider the string in L. . So, we can write

S = uvwxy such that

1. |vx|>0

2. |vwx| n and

3. for i 0

By (i) and (ii), . Thus if we let i = 1 in (iii) (i.e. if we pump once), we get a

string where . Now if we arrange the elements of L in ascending order

of length, thus the next element after must be of length i.e. of

length .

Since , we conclude that (which is of length j) is not in L, which

contradicts the pumping lemma.

Hence L is not a CFL.

8.3 CLOSURE PROPERTY OF CONTEXT FREE LANGUAGES (CFLs)

We consider some important closure properties of CFLs.

Theorem : If and are CFLs then so is

Proof : Let and be CFGs generating. Without loss

of generality, we can assume that . Let is a nonterminal not in or . We

construct the grammar from and , where

,

We now show that

Thus proving the theorem.

Let . Then . All productions applied in their derivation are also in .

Hence i.e.

Similarly, if , then

Thus .

Conversely, let . Then and the first step in this derivation must be

either or . Considering the former case, we have

Since and are disjoint, the derivation must use the productions of only (

which are also in) Since is the start symbol of . Hence,

 giving .

Using similar reasoning, in the latter case, we get . Thus .

So, , as claimed.

Theorem: If and are CFLs, then so is .

Proof: Let and be the CFGs generating and

 respectively. Again, we assume that and are disjoint, and is a nonterminal not

in or . we construct the CFG from and , where

We claim that

o prove it, we first assume that and . Then and . We can derive

the string xy in as shown below.

since and . Hence .

For the converse, let . Then the derivation of w in will be of the form

 i.e. the first step in the derivation must see the rule . Again,

since and are disjoint and and , some string x will be generated

from using productions in (which are also in) and such that .

Thus

Hence and .

This means that w can be divided into two parts x, y such that and .

Thus .This completes the proof.

Theorem : If L is a CFL, then so is .

Proof : Let be the CFG generating L. Let us construct the

CFG from G where .

We now prove that , which prove the theorem.

 can generate in one step by using the production since , can generate

any string in L. Let for any n >1 we can write where

 for . w can be generated by using following steps.

First (n-1)-steps uses the production S SS producing the sentential form of n numbers

of S 's. The nonterminal S in the i-th position then generates using production in P (which

are also in)

It is also easy to see that G can generate the empty string, any string in L and any

string for n >1 and none other.

Hence

Theorem : CFLs are not closed under intersection

Proof : We prove it by giving a counter example. Consider the

language .The following CFG generates L1 and hence a CFL

The nonterminal X generates strings of the form and C generates strings of the

form , . These are the only types of strings generated by X and C.

Hence, S generates .

Using similar reasoning, it can be shown that the following grammar

 and hence it is also a CFL.

But, and is already shown to be not context-free.

Hence proof.

Theorem : A CFL's are not closed under complementations

Proof : Assume, for contradiction, that CFL's are closed under complementation. SInce,

CFL's are also closed under union, the language , where and are CFL's must be

CFL. But by DeMorgan's law

This contradicts the already proved fact that CFL's are not closed under intersection.

But it can be shown that the CFL's are closed under intersection with a regular set.

Theorem : If L is a CFL and R is a regular language, then is a CFL.

Proof : Let be a PDA for L and let be a

DFA for R.

We construct a PDA M from P and D as follows

where is defined as

 contains iff

 and contains

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff

both P and D accepts. That means, we want to show that

We apply induction on n, the number of moves, to show that

 iff

 and

Basic Case is n=0. Hence , and . For this case it is trivially true

Inductive hypothesis : Assume that the statement is true for n -1.

Inductive Step : Let w = xa and

Let

By inductive hypothesis, and

From the definition of and considering the n-th move of the PDA M above, we have

 and

Hence and

Inductive hypothesis: Assume that the statement is true for n -1.

Inductive Step: Let w = xa and

Let

By inductive hypothesis, and

From the definition of and considering the n-th move of the PDA M above, we have

 and

Hence and

If and , then and we got that if M accepts w, then

both P and D accepts it.

We can show that converse, in a similar way. Hence is a CFL (since it is accepted by

a PDA M)

This property is useful in showing that certain languages are not context-free.

Example: Consider the language

Intersecting L with the regular set , we get

Which is already known to be not context-free. Hence L is not context-free.

Theorem : CFL's are closed under reversal. That is if L is a CFL, then so is

Proof : Let the CFG generates L. We construct a CFG

 where

. We now show that , thus proving the theorem.

We need to prove that

 iff .

The proof is by induction on n, the number of steps taken by the derivation. We assume, for

simplicity (and of course without loss of generality), that G and hence are in CNF.

The basis is n=1 in which case it is trivial. Because must be either or BC

with .

Hence iff and

Assume that it is true for (n-1)-steps. Let . Then the first step must apply a rule of the

form and it gives

 where and

By constructing of G',

Hence

The converse case is exactly similar.

Substitution :

, let be a language (over any alphabet). This defines a function S, called

substitution, on which is denoted as - for all

This definition of substitution can be extended further to apply strings and langauge as well.

If , where , is a string in , then

.

Similarly, for any language L,

The following theorem shows that CFLs are closed under substitution.

Thereom: Let is a CFL, and s is a substitution on such that is a CFL for

all , thus s(L) is a CFL

Proof: Let L = L(G) for a CFG and for every , for

some . Without loss of generality, assume that the sets of non

terminals N and 's are disjoint.

Now, we construct a grammar , generating s(L), from G and 's as follows :

•

•

•
• consists of

o and

o The production of P but with each terminal a in the right hand side of a

production replaced by everywhere.

We now want to prove that this construction works i.e. iff .

If Part : Let then according to the definition there is some string

 and for such that

We will show that .

 From the construction of , we find that, there is a derivation

 corresponding to the string (since contains all productions of G but every ai

replaced with in the RHS of any production).

Every is the start symbol of and all productions of are also included in .

Hence

Therefore, .

(Only-if Part) Let . Then there must be a derivative as follows :

 (using the production of G include in as modified by (step 2) of the

construction of .)

Each () can only generate a string , since each 's and N are

disjoin. Therefore, we get

 since

 since

The string is formed by substituting strings for each and

hence .

Theorem : CFL's are closed under homomorphism

Proof : Let be a CFL, and h is a homomorphism on i.e for some

alphabets . Consider the following substitution S: Replace each symbol by the

language consisting of the only string h(a), i.e. for all . Then, it is clear

that, h(L) = s(L). Hence, CFL's being closed under substitution must also be closed under

homomorphism.

CHECK YOUR PROGRESS

True/False type questions

1)Pumping Lemma can be used in the same way to show that certain languages are context-

free._____________

2) A CFL's are not closed under complementation__________________

3) There are algorithms to test emptiness of a CFL.________________

4) CFLs are closed under intersection_______________

5) CYK Algorithm to decide membership in CFL____________

Answers-

1) False

2) True

3) True

4) False

5) True

8.4 SOME DECISION ALGORITHMS FOR CFLs

In this section, we examine some questions about CFLs we can answer. A CFL may be

represented using a CFG or PDA. But an algorithm that uses one representation can be made

to work for the others, since we can construct one from the other.

8.4.1 TESTING EMPTINESS:

Theorem: There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the

construction described in the context of elimination of useless symbols, whether the start

symbol is useless. If so, then ; otherwise not.

8.4.2 TESTING MEMBERSHIP:

Given a CFL L and a string x, the membership, problem is to determine whether ?

Given a PDA P for L, simulating the PDA on input string x does not quite work, because the

PDA can grow its stack indefinitely on input, and the process may never terminate, even if

the PDA is deterministic.

So, we assume that a CFG is given such that L = L(G).

Let us first present a simple but in-efficient algorithm.

Convert G to in CNF generating . If the input string ,

then we need to determine whether and it can easily be done using the technique

given in the context of elimination of -production. If , then iff .

Consider a derivation under a grammar in CNF. At every step, a production in CNF in used,

and hence it adds exactly one terminal symbol to the sentential form. Hence, if the length of

the input string x is n, then it takes exactly n steps to derive x (provided x is in).

Let the maximum number of productions for any non terminal in is K. So at every step in

derivation, there are atmost k choices. We may try out all these choices, systematically., to

derive the string x in . Since there are atmost i.e. choices. This algorithms is of

exponential time complexity. We now present an efficient (polynomial time) membership

algorithm.

8.4.3 CYK ALGORITHM TO DECIDE MEMBERSHIP IN CFL

We now present a cubic-time algorithm due to cocke, Younger and Kasami. It uses the

dynamic programming technique-solves smaller sub-problems first and then builds up

solution by combining smaller sub-solutions. It determines for each substring y of the given

string x the set of all nonterminals that generate y. This is done inductively on the length of y.

Let be the given CFG in CNF. Consider the given string x and let .

Let be the substring of x that begins at position i (i.e. i-th symbol of x) and has length j.

Let be the set of all nonterminals A such that .

We write . Where each is a terminal symbol.

 iff . Thus we construct the sets for all .

Combining substrings of length 2, it is clear that, i.e. iff there is a

production in G and and .

That is iff and and

Thus we can construct the sets from the already constructed sets , by inspecting the

grammar.

In general considering substrings of length j, i.e. iff there is a

production in G such that and for some .

That is iff and for some such that . The

idea is to divide, into smaller substrings, using all possible ways (i.e. for different values

of k), and construct from already constructed sets for smaller substrings (i.e.

 and) by inspecting the grammar.

These sets for longer substrings of x are constructed inductively until the set for the

string is constructed.

It is clear from the construction that iff

Hence, we can determine whether by inspecting .

The CYK algorithm is presented next.

CYK-Algorithm

Input: A CFG and a string

Initialize:

for j : = 2 to n do /* Determine for all i */

for i := 1 to n-j+1 do /* No sense in considering i, j with for all i */

for k := 1 to j-1 do /* try substrings of of length k */

• The correctness of the algorithm can be proved by applying induction on j that

whenever the outer loop finishes for particular j, the set contains all non-terminals

A that can derive (for all i).

• It is easy to conclude that the time complexity of this algorithm is

 where and grammar G is "fixed" in the sense that the size of the grammar is

not considered as input in measuring complexity.

• Example : Consider the CFG:

S AB | AC

A BC | a

B CB | b

C AA | b

Let us decide the membership for the string x = baaaab using the CYK algorithm.

The table for 's is shown below.

Word: b a a a a b

• Cell i, j will contain Nij

• The top row is filled in by the first step of the algorithm e.g. ,

because is a production. We can compute the contents of the second

row by using the contents of the first row (already done) and inspecting the grammar.

For example, to compute (i.e. the set of non-terminals that derive) we

notice that if or if or is a production since no

such production exists, we have .

Similarly since is a production and , we put .

• Now, consider the first element of the third row, (corresponding to the string

). There are two ways to break up , and

• Consider . Since , and is a production, we

put . (If we consider, the other way i.e. we find that and

hence no more symbols can be added to).

• Continuing this way we fill up the whole table as given below

Figure

x = x16 = baaaab

Since

Hence baaaab is a member of the language generated by the grammar.

8.5 TESTING FINITENESS OF A CFL

We now show that there exist algorithms to decide finiteness of a CFL. Let L be a CFL. Then

there is some pumping lemma constant n for L. The following algorithm derives the

finiteness of L.

8.5.1 DECISION ALGORITHM FOR TESTING FINITENESS OF A CFL:

1. Test all input strings begining with those of length n (in non-decreasing order of length)

for membership. (we already have developed algorithm for testing membership).

• If there is a string x with length such that , then L is infinite

otherwise L is finite.

Proof: If and , then x can be pumped according to the pumping lemma and the

language is infinite. We need to test strings of length less than 2n only . Because if there were

a string of length 2n or longer, we can always find a shorter string , (by

pumping lemma), but it is atmost n shorter. Thus if there are any strings of length 2n or more

we can repeatedly cut out the substring vx to get, eventually, a string whose length is in the

range n to 2n-1.

8.6 CONCLUSION

This module explains about the basic understanding of Context Free Languages (CFLs). It

discusses Closure Property of Context Free Languages (CFLs), Some Decision Algorithms

for CFLs and Testing Finiteness of a CFL through various theorems, lemmas and step-wise

elaborated solved examples.

8.7 CHECK YOUR PROGRESS

Fill in the blanks:

1) Pumping Lemma can be used in the same way to show that certain languages

are_________________

2) CYK Algorithm____________ membership in CFL

3) If L is a CFL and R is a regular language, then ___________________________ is a CFL.

4) A CFL's are not closed under________________

5) CFL's are closed under ______________

8.8 ANSWER CHECK YOUR PROGRESS

1) not context-free

2) To decide

3) L intersection R

4) Complementation

5) Reversal.

8.9 MODEL QUESTION

Qs-1) What is Pumping Lemma why it is used?

Qs-2) Context Free Languages (CFLs) are not closed under intersection explain with the help

of example?

Qs-3) How to test Finiteness of Context Free Languages (CFL)?

Qs-4) Explain CYK Algorithm?

Qs-5) What is Context Free Languages (CFL)? How to test Emptiness of Context Free

Languages (CFL)?

8.10 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

8.11 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

Block-III

UNIT-IX TURING MACHINES

9.1 Learning Objectives

9.2 Informal Description

9.3 Formal Definition

9.4 Transition Function

9.5 Instantaneous Description (IDs) or Configurations of a TM

9.6 Moves of Turing Machines

9.7 Special Boundary Cases

9.8 More about Configuration and Acceptance

9.9 Conclusion

9.10 Check your progress

9.11 Answer Check your progress

9.12 Model Question

9.13 References

9.14 Suggested readings

9.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Turing Machines (TMs). It explains Informal

Description and Formal Definition of Turing Machines. The chapter discusses Transition

Function, Instantaneous Description (IDs) or Configurations of a TM, Moves of Turing

Machines, Special Boundary Cases and some more concepts about Configuration and

Acceptance through proper elaborations.

9.2 INFORMAL DESCRIPTION

We consider here a basic model of TM which is deterministic and have one-tape. There are

many variations, all are equally powerful.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell

but is infinite to the right and a tape head that can move left and right over the tape, reading

and writing symbols.

For any input w with |w|=n, initially it is written on the n leftmost (contiguous) tape cells.

The infinitely many cells to the right of the input all contain a blank symbol, B which is a

special tape symbol that is not an input symbol. The machine starts in its start state with its

head scanning the leftmost symbol of the input w. Depending upon the symbol scanned by

the tape head and the current state the machine makes a move which consists of the

following:

• writes a new symbol on that tape cell,

• moves its head one cell either to the left or to the right and

• (possibly) enters a new state.

The action it takes in each step is determined by a transition function. The machine continues

computing (i.e., making moves) until

• it decides to "accept" its input by entering a special state called accept or final state or

• halts without accepting i.e., rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting

the input, in which case it is said to "loop" on that input.

9.3 FORMAL DEFINITION

Formally, a Deterministic Turing machine (DTM) is a 7-tuple .

Where,

• Q is a finite nonempty set of states.

• is a finite non-empty set of tape symbols, called the tape alphabet of M.

• is a finite non-empty set of input symbols, called the input alphabet of M.

• is the transition function of M,

• is the initial or start state.

• is the blank symbol

• is the set of final state.

So, given the current state and tape symbol being read, the transition function describes the

next state, symbol to be written on the tape, and the direction in which to move the tape head

(L and R denote left and right, respectively).

9.4 TRANSITION FUNCTION ()

• The heart of the TM is the transition function, because it tells us how the machine

gets one step to the next.

• when the machine is in a certain state q Q and the head is currently scanning the tape

symbol , and if , then the machine

1. replaces the symbol X by Y on the tape

2. goes to state p, and

3. the tape head moves one cell (i.e., one tape symbol) to the left (or right)

if D is L (or R).

9.5 INSTANTANEOUS DESCRIPTION (IDs) OR

CONFIGURATIONS OF A TM

The ID (instantaneous description) of a TM capture what is going out at any moment i.e., it

contains all the information to exactly capture the "current state of the computations".

It contains the following:

• The current state, q

• The position of the tape head,

• The constants of the tape up to the rightmost nonblank symbol or the symbol to the

left of the head, whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank

symbols on the tape, at any finite time, the TM has visited only a finite prefix of the infinite

tape.

An ID (or configuration) of a TM M is denoted by where and

• is the tape contents to the left of the head.

• q is the current state.

• is the tape contents at or to the right of the tape head.

That is, the tape head is currently scanning the leftmost tape symbol of . (Note that

if , then the tape head is scanning a blank symbol)

If is the start state and w is the input to a TM M then the starting or initial configuration

of M is obviously denoted by .

9.6 MOVES OF TURING MACHINES

To indicate one move we use the symbol . Similarly, zero, one, or more moves will be

represented by . A move of a TM M is defined as follows.

• Let be an ID of M where , and .

• Let there exists a transition of M.

Then we write meaning that ID yields

• Alternatively, if is a transition of M, then we write

 which means that the ID yields .

• In other words, when two IDs are related by the relation , we say that the first one

yields the second (or the second is the result of the first) by one move.

• If IDj results from IDi by zero, one or more (finite) moves then we write (If the

TM M is understand, then the subscript M can be dropped from or).

9.7 SPECIAL BOUNDARY CASES

• Let be an ID and be a transition of M. Then . That is, the

head is not allowed to fall off the left end of the tape.

• Let be an ID and then figure (Note that is equivalent

to)

• Let be an ID and then figure

• Let be an ID and then figure

The language accepted by a TM , denoted as L(M) is

L(M) = {w | and figure for some p F and }

In other words, the TM M accepts a string that cause M to enter a final or accepting

state when started in its initial ID (i.e.,). That is a TM M accepts the string if a

sequence of IDs, exists such that

• is the initial or starting ID of M

• ;

• The representation of IDk contains an accepting state.

The set of strings that M accepts is the language of M, denoted L(M), as defined above.

CHECK YOUR PROGRESS

True/False type questions

1) The basic model of TM has a finite set of states____________

2) Formally, a Deterministic Turing machine (DTM) is a 7-tuple _____________

3) The heart of the TM is the transition function_______________

4) A deterministic TM is an 5-tuple_______________

5) Turing Machine is accepted by Push down automata_______________

Answers-

1) True

2) True

3) True

4) False

5) False

9.8 MORE ABOUT CONFIGURATION AND ACCEPTANCE

• An ID of M is called an accepting (or final) ID if

• An ID is called a blocking (or halting) ID if is undefined i.e. the TM

has no move at this point.

• is called reactable from if

• is the initial (or starting) ID if is the input to the TM and is the

initial (or start) state of M.

On any input string

either

• M halts on w if there exists a blocking (configuration) ID, such that .

There are two cases to be considered

• M accepts w if I is an accepting ID. The set of all accepted by M is denoted

as L(M) as already defined

• M rejects w if is a blocking configuration. Denote by reject (M), the set of

all rejected by M.

or

• M loops on w if it does not halt on w.

Let loop(M) be the set of all on which M loops for.

It is quite clear that

That is, we assume that a TM M halts

• When it enters an accepting or

• When it enters a blocking i.e., when there is no next move.

However, on some input string, , it is possible that the TM M loops for ever i.e., it

never halts.

It is observed that in the basic TM model there is no apparent way for the machine to "reject"

the input string. And, instead of a single accepting state there is a set of accepting states.

Considering these two facts, we define a new model which is equivalent (can be shown) to

the basic TM model as follows:

A deterministic TM is an 8-tuple

where,

 is the accepting state

 is the rejecting state

No transition are possible from and . All other elements of M remain same as defined in

case of basic model.

The language accepted by the M is defined as

L(M) = { and for some }

The TM M rejects a string iff

• for some or

• M enters in an infinite loop on input w i.e., M never halts on w.

• M enters in a blocking ID on input w i.e., M never halts on w. or

• M enters in a blocking ID on input w i.e., and is undefined.

If M accepts w, we can determine it, because M eventually enters the accepting state . But

if M does not accept w, we may not be able to determine this since M may reject w by not

halting.

This leads us to categorize the language accepted by the TMs into two broad classes as

follows (Described in Next Module).

9.9 CONCLUSION

This module explains about the basic understanding of Turing Machines (TMs). It explains

Informal Description and Formal Definition of Turing Machines. The module also discusses

Transition Function, Instantaneous Description (IDs) or Configurations of a TM, Moves of

Turing Machines, Special Boundary Cases and some important concepts about Configuration

and Acceptance with proper elaborations.

9.10 CHECK YOUR PROGRESS

Fill in the Blanks:

1) The basic model of TM has a _____________ set of states.

2) TM many keep on computing forever without ever accepting or rejecting the________

3) A deterministic TM is an__________ 8-tuple

4) The language accepted by Turing Machine is_______________

5) The heart of the TM is the_____________

9.11 ANSWER CHECK YOUR PROGRESS

Answers:

1) Finite

2) Input

3) 8 Tuple

4) Recursive Language

5) Transition function

9.12 MODEL QUESTION

Qs-1) What is basis model of Turing machine. Explain with the helpnof example?

Qs-2) What is Transition function explain in detail?

Qs-3) What is instantaneous description or configurations of Turing machine?

Qs-4) What are Special boundary cases of Turing Machine?

Qs-5) What are moves of Turing Machine explain your answer?

9.13 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

9.14 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

UNIT-X RECURSIVELY ENUMERABLE LANGUAGE

10.1 Learning Objectives

10.2 Recursive language

10.2.1 Recursively Enumerable (R.E) Language

10.2.2 Recursive (Or Decidable) Languages

10.2.3 Examples

10.3 Closure Properties

10.4 Post Correspondence Problem

10.5 Proof Sketch of Undecidability

10.6 Conclusion

10.7 Check your progress

10.8 Answer Check your progress

10.9 Model Question

10.10 References

10.11 Suggested readings

10.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Recursive language, Recursively Enumerable

(R.E) Language. Recursive (Or Decidable) Languages, Closure Properties, Post

Correspondence Problem and Proof Sketch of Un-decidability through various concepts and

step-wise elaborated solved examples.

10.2 RECURSIVE LANGUAGE

In mathematics, logic and computer science, a formal language (a set of finite sequences

of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set

of all possible finite sequences over the alphabet of the language. Equivalently, a formal

language is recursive if there exists a total Turing machine (a Turing machine that halts for

every given input) that, when given a finite sequence of symbols from the alphabet of the

language as input (any string containing only characters in the language's alphabet) accepts

only those that are part of the language and rejects all other strings. Recursive languages are

also called decidable.

The concept of decidability may be extended to other models of computation. For

example, one may speak of languages decidable on a non-deterministic Turing machine.

Therefore, whenever an ambiguity is possible, the synonym for "recursive language" used

is Turing-decidable language, rather than simply decidable.

The class of all recursive languages is often called R, although this name is also used

for the class RP. This type of language was not defined in the Chomsky hierarchy. All

recursive languages are also recursively enumerable. All regular, context-free and context-

sensitive languages are recursive. There exist three equivalent major definitions for the

concept of a recursively enumerable language.

1. A recursively enumerable language is a recursively enumerable subset in the set of all

possible worlds over the alphabet of the language.

2. A recursively enumerable language is a formal language for which there exists a Turing

machine (or other computable function) which will enumerate all valid strings of the

language. Note that if the language is infinite, the enumerating algorithm provided can be

chosen so that it avoids repetitions, since we can test whether the string produced for

number n is "already" produced for a number which is less than n. If it already is

produced, use the output for input n+1 instead (recursively), but again, test whether it is

"new".

3. A recursively enumerable language is a formal language for which there exists a Turing

machine (or other computable function) that will halt and accept when presented with

any string in the language as input but may either halt and reject or loop forever when

presented with a string not in the language. Contrast this to recursive languages, which

require that the Turing machine halts in all cases.

https://en.formulasearchengine.com/wiki/Mathematics
https://en.formulasearchengine.com/wiki/Logic
https://en.formulasearchengine.com/wiki/Computer_science
https://en.formulasearchengine.com/wiki/Formal_language
https://en.formulasearchengine.com/wiki/Set_(mathematics)
https://en.formulasearchengine.com/index.php?title=Symbol_(formal)&action=edit&redlink=1
https://en.formulasearchengine.com/wiki/Alphabet_(computer_science)
https://en.formulasearchengine.com/index.php?title=Recursive_set&action=edit&redlink=1
https://en.formulasearchengine.com/index.php?title=Total_Turing_machine&action=edit&redlink=1
https://en.formulasearchengine.com/wiki/Turing_machine
https://en.formulasearchengine.com/index.php?title=Models_of_computation&action=edit&redlink=1
https://en.formulasearchengine.com/wiki/Non-deterministic_Turing_machine
https://en.formulasearchengine.com/wiki/R_(complexity)
https://en.formulasearchengine.com/index.php?title=RP_(complexity)&action=edit&redlink=1
https://en.formulasearchengine.com/wiki/Chomsky_hierarchy
https://en.formulasearchengine.com/wiki/Recursively_enumerable_language
https://en.formulasearchengine.com/wiki/Regular_language
https://en.formulasearchengine.com/wiki/Context-free_language
https://en.formulasearchengine.com/wiki/Context-sensitive_language
https://en.formulasearchengine.com/wiki/Context-sensitive_language
https://en.formulasearchengine.com/wiki/Recursively_enumerable_set
https://en.formulasearchengine.com/wiki/Subset
https://en.formulasearchengine.com/wiki/Set_(mathematics)
https://en.formulasearchengine.com/wiki/Turing_machine
https://en.formulasearchengine.com/wiki/Turing_machine
https://en.formulasearchengine.com/wiki/Computable_function
https://en.formulasearchengine.com/wiki/Infinity
https://en.formulasearchengine.com/index.php?title=Literal_string&action=edit&redlink=1
https://en.formulasearchengine.com/wiki/Recursive_language

All regular, context-free, context-sensitive and recursive languages are recursively

enumerable. Post's theorem shows that RE, together with its complement co-RE, correspond

to the first level of the arithmetical hierarchy.

10.2.1 Recursively Enumerable (R.E.) Language:

It is also called as TM-recognizable language or semi-decidable language. Simply speaking, a

language L is recursively enumerable if some Turing Machine accepts it. Formally, the class

of r.e. languages is defined as

{ L | and TM M such that L = L(M) }

• So, on input string , M enters an accepting ID and halts.

• But , on input strings , M either halts entering a bloueing ID (i.e. without entering

an accepting ID), or it never halts (i.e. it loops for ever).

10.2.2 Recursive (or decidable) Languages

A language L is recursive if there is some TM M that halts on every input and

L= L(M).

Formally, the class of recursive language is defined as

{ L | and TM M such that M halts and L = L(M) }

• So, on any input strings w L, M enters an accepting ID and halts and

• On an input string w L, M halts entering in a blocking ID (or entering in a reject state).

10.2.3 Example

The Halting problem is recursively enumerable but not recursive. Indeed, one can run the

Turing Machine and accept if the machine halts, hence it is r.e. On the other hand, the

problem is undecidable.

Some other RE, languages are:

• Post correspondence problem

• Mortality (computability theory)

• Entscheidungs problem

10.3 CLOSURE PROPERTIES

Recursively enumerable languages are closed under the following operations. That is,

if L and P are two recursively enumerable languages, then the following languages are

recursively enumerable as well:

https://en.formulasearchengine.com/wiki/Regular_language
https://en.formulasearchengine.com/wiki/Context-free_language
https://en.formulasearchengine.com/wiki/Context-sensitive_language
https://en.formulasearchengine.com/wiki/Recursive_language
https://en.formulasearchengine.com/wiki/Post%27s_theorem
https://en.formulasearchengine.com/wiki/RE_(complexity)
https://en.formulasearchengine.com/index.php?title=Complement_(complexity)&action=edit&redlink=1
https://en.formulasearchengine.com/index.php?title=Co-RE&action=edit&redlink=1
https://en.formulasearchengine.com/wiki/Arithmetical_hierarchy
https://en.formulasearchengine.com/wiki/Post_correspondence_problem
https://en.formulasearchengine.com/index.php?title=Mortality_(computability_theory)&action=edit&redlink=1
https://en.formulasearchengine.com/index.php?title=Entscheidungsproblem&action=edit&redlink=1

• The Kleene star of L

• The concatenation of L and P

• The union

• The intersection

Note that recursively enumerable languages are not closed under set difference or

complementation. The set difference L - P may or may not be recursively enumerable. If L is

recursively enumerable, then the complement of L is recursively enumerable if and only

if L is also recursive.

10.4 POST CORRESPONDENCE PROBLEM

The Post correspondence problem is an undecidable decision problem that was introduced

by Emil Post in 1946. Because it is simpler than the halting problem and the Entscheidungs

problem it is often used in proofs of undecidability.

Definition of the problem:
The input of the problem consists of two finite lists and {\displaystyle \beta _{1},\ldots ,\beta

_{N}} of words over some alphabet having at least two symbols. A solution to this problem

is a sequence of indices {\displaystyle (i_{k})_{1\leq k\leq K}}with and {\displaystyle 1\leq

i_{k}\leq N} for all, such that the decision problem then is to decide whether such a solution

exists or not.

Example instances of the problem

Example 1

Consider the following two lists:

α1 α2 α3

a ab bba

β1 β2 β3

baa aa bb

https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.1
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.1
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.3
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.5
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.5

 A solution to this problem would be the sequence (3, 2, 3, 1), because

Furthermore, since (3, 2, 3, 1) is a solution, so are all of its "repetitions", such as (3, 2, 3, 1, 3,

2, 3, 1), etc.; that is, when a solution exists, there are infinitely many solutions of this

repetitive kind.

However, if the two lists had consisted of only {\displaystyle \alpha _{2},\alpha _{3}}

 and {\displaystyle \beta _{2},\beta _{3}} from those sets, then there would have been

no solution (the last letter of any such α string is not the same as the letter before it, whereas β

only constructs pairs of the same letter).

A convenient way to view an instance of a Post correspondence problem is as a collection of

blocks of the form

αi

βi

there being an unlimited supply of each type of block. Thus the above example is viewed as

a

baa

i = 1

ab

aa

i = 2

bba

bb

i = 3

where the solver has an endless supply of each of these three block types. A solution

corresponds to some way of laying blocks next to each other so that the string in the top cells

corresponds to the string in the bottom cells. Then the solution to the above example

corresponds to:

bba

bb

i1 = 3

ab

aa

i2 = 2

bba

bb

i3 = 3

A

Baa

i4 = 1

Example 2

Again using blocks to represent an instance of the problem, the following is an example that

has infinitely many solutions in addition to the kind obtained by merely "repeating" a

solution.

bb ab c

https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.9
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.9
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.9
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.10
https://en.formulasearchengine.com/index.php?title=Special:FormulaInfo&pid=223442&eid=math.223442.10

b

1

ba

2

bc

3

In this instance, every sequence of the form (1, 2, 2, . . ., 2, 3) is a solution (in addition to all

their repetitions):

bb

b

1

ab

ba

2

ab

ba

2

Ab

Ba

2

c

bc

3

CHECK YOUR PROGRESS

True/False type questions

1) A formal language is recursive if there exists a total Turing machine____________

2) Recursively enumerable languages are closed under intersection _________________

3) The Halting problem is recursively enumerable but not recursive__________________

4) The Post correspondence problem is an decidable decision ____________________

5) Recursively enumerable languages are not closed under union____________________

Answers-

1) True

2) True

3) True

4) False

5) False

10.5 PROOF SKETCH OF UNDECIDABILITY

The most common proof for the undecidability of PCP describes an instance of PCP that can

simulate the computation of a Turing machine on a particular input. A match will only occur

if the input would be accepted by the Turing machine. Because deciding if a Turing machine

will accept an input is a basic undecidable problem, PCP cannot be decidable either. The

following discussion is based on Michael Sipser's textbook Introduction to the Theory of

Computation.

https://en.formulasearchengine.com/index.php?title=Total_Turing_machine&action=edit&redlink=1
https://en.formulasearchengine.com/wiki/Turing_machine
https://en.formulasearchengine.com/index.php?title=Michael_Sipser&action=edit&redlink=1

In more detail, the idea is that the string along the top and bottom will be a computation

history of the Turing machine's computation. This means it will list a string describing the

initial state, followed by a string describing the next state, and so on until it ends with a string

describing an accepting state. The state strings are separated by some separator symbol

(usually written #). According to the definition of a Turing machine, the full state of the

machine consists of three parts:

• The current contents of the tape.

• The current state of the finite state machine which operates the tape head.

• The current position of the tape head on the tape.

Although the tape has infinitely many cells, only some finite prefix of these will be non-

blank. We write these down as part of our state. To describe the state of the finite control, we

create new symbols, labelled q1 through qk, for each of the finite state machine's k states. We

insert the correct symbol into the string describing the tape's contents at the position of the

tape head, thereby indicating both the tape head's position and the current state of the finite

control. For the alphabet {0, 1}, a typical state might look something like:

101101110q700110.

A simple computation history would then look something like this:

q0101#1q401#11q21#1q810.

We start out with this block, where x is the input string and q0 is the start state:

q0x#

The top starts out "lagging" the bottom by one state, and keeps this lag until the very end

stage. Next, for each symbol a in the tape alphabet, as well as #, we have a "copy" block,

which copies it unmodified from one state to the next:

a

a

We also have a block for each position transition the machine can make, showing how the

tape head moves, how the finite state changes, and what happens to the surrounding symbols.

For example, here the tape head is over a 0 in state 4, and then writes a 1 and moves right,

changing to state 7:

q40

https://en.formulasearchengine.com/wiki/Computation_history
https://en.formulasearchengine.com/wiki/Computation_history

1q7

Finally, when the top reaches an accepting state, the bottom needs a chance to finally catch

up to complete the match. To allow this, we extend the computation so that once an accepting

state is reached, each subsequent machine step will cause a symbol near the tape head to

vanish, one at a time, until none remain. If qf is an accepting state, we can represent this with

the following transition blocks, where a is a tape alphabet symbol:

qfa

qf

aqf

qf

There are a number of details to work out, such as dealing with boundaries between states,

making sure that our initial tile goes first in the match, and so on, but this shows the general

idea of how a static tile puzzle can simulate a Turing machine computation.

The previous example

q0101#1q401#11q21#1q810.

is represented as the following solution to the Post correspondence problem:

Source: https://en.formulasearchengine.com/wiki/Chomsky_hierarchy#/media/File:Chomsky-

hierarchy.svg

10.6 CONCLUSION

This module explains about the basic understanding of Recursive languages. It discusses

Recursively Enumerable (R.E) Language. Recursive (Or Decidable) Languages, Closure

Properties, Post Correspondence Problem and Proof Sketch of Undecidability through

various concepts and step-wise elaborated solved examples.

10.7 CHECK YOUR PROGRESS

Fill in the blanks:

1) Recursive languages are also called ______________

2) The Halting problem is recursively enumerable but not _______________

3) All regular, context-free, context-sensitive and recursive languages are________________

4) A formal language is recursive if there exists a total_________________

5) The Post correspondence problem is an ______________________

10.8 ANSWER CHECK YOUR PROGRESS

1) Decidable.

2) Recursive

3) Recursively enumerable.

4) Turing machine

5) Undecidable decision

10.9 MODEL QUESTION

Qs-1) Explain closure property for Recursive enumerable?

Qs-2) What is post correspondence problem?

Qs-3) Explain with the diagram Chomsky hierarchy?

Qs-4) Explain Recursive enumerable language?

Qs-5) What are three parts of full state of Turing machine?

https://en.formulasearchengine.com/wiki/Regular_language
https://en.formulasearchengine.com/wiki/Context-free_language
https://en.formulasearchengine.com/wiki/Context-sensitive_language
https://en.formulasearchengine.com/wiki/Recursive_language
https://en.formulasearchengine.com/index.php?title=Total_Turing_machine&action=edit&redlink=1

Qs-6) Is the set of all definable subsets of the natural numbers recursively enumerable?

10.10 REFERENCES

• https://nptel.ac.in/courses/106/103/106103070/

• Sipser, M. (1996), Introduction to the Theory of Computation, PWS Publishing Co.

• Kozen, D.C. (1997), Automata and Computability, Springer.

• https://en.formulasearchengine.com/wiki/Recursive_language

10.11 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://math.stackexchange.com/questions/184528/is-the-set-of-all-definable-subsets-of-the-natural-numbers-recursively-enumerabl
https://nptel.ac.in/courses/106/103/106103070/

UNIT-XI POST'S CORRESPONDENCE PROBLEM

11.1 Learning Objectives

11.2 Post's Correspondence Problem (PCP)

11.3 Post's Correspondence System (PCS)

11.4 Conclusion

11.5 Check your progress

11.6 Answer Check your progress

11.7 Model Question

11.8 References

11.9 Suggested readings

11.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Post's Correspondence Problem (PCP). It

explains Post's Correspondence System (PCS) through various theorems, corollaries, and

lemmas along with step-wise elaborated solved examples.

11.2 POST'S CORRESPONDENCE PROBLEM (PCP)

Theorem 11.1.1: Given any two CFG's G1 and G2 the question "Is " is

undecidable.

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This

would imply that PCP is decidable as shown below.

For any Post Correspondence System, P construct grammars and by using the

constructions elaborated already. We can now use the algorithm A to decide

whether and Thus, PCP is decidable, a

contradiction. So, such an algorithm does not exist.

If and are CFG's constructed from any arbitrary Post Correspondence System, than it

is not difficult to show that and are also context-free, even though the class of

context-free languages are not closed under complementation.

and their complements can be used in various ways to show that many other

questions related to CFL's are undecidable. We prove here some of those.

Theorem 11.1.2: Foe any two arbitrary CFG's the following questions are

undecidable.

i. Is

ii. Is

iii. Is

Proof:

i. If then,

Hence, it suffice to show that the question “Is " is undecidable.

Since, and are CFl's and CFL's are closed under union, is

also context-free. By DeMorgan's theorem,

If there is an algorithm to decide whether we can use it to decide

whether or not. But this problem has already been proved to be

undecidable.

Hence there is no such algorithm to decide or not.

Let P be any arbitrary Post correspondence system and and are CFg's constructed

from the pairs of strings.

must be a CFL and let G1generates L1. That is,

by De Morgan's theorem, as shown already, any string, represents a

solution to the PCP. Hence, contains all but those strings representing the solution to

the PCP.

Let for same CFG G2.

It is now obvious that if and only if the PCP has no solutions, which is

already proved to be undecidable. Hence, the question “Is ?" is undecidable.

Let be a CFG generating the language and G2 be a CFG

generating where and are CFG.s constructed from same arbitrary

instance of PCP.

 iff

i.e. iff the PCP instance has no solutions as discussed in part (ii).

Hence the proof.

Theorem 11.1.3: It is undecidable whether an arbitrary CFG is ambiguous.

Proof : Consider an arbitrary instance of PCP and construct the CFG's and from the

ordered pairs of strings.

We construct a new grammar G from and as follows.

 where

 is same as that of and .

This construction gives a reduction of PCP to the -------- of whether a CFG is ambiguous,

thus leading to the undecidability of the given problem. That is, we will now show that the

PCP has a solution if and only if G is ambiguous. (where G is constructed from an arbitrary

instance of PCP).

Proof: Consider an arbitrary instance of PCP and construct the CFG's and from the

ordered pairs of strings.

We construct a new grammar G from and as follows.

 where

 is same as that of and .

This construction gives a reduction of PCP to the -------- of whether a CFG is ambiguous,

thus leading to the undecidability of the given problem. That is, we will now show that the

PCP has a solution if and only if G is ambiguous. (where G is constructed from an arbitrary

instance of PCP).

Only if Assume that is a solution sequence to this instance of PCP.

Consider the following two derivation in .

But,

is a solution to the PCP. Hence the same string of terminals has two derivations.

Both these derivations are, clearly, leftmost. Hence G is ambiguous.

If It is important to note that any string of terminals cannot have more than one derivation

in and Because, every terminal string which are derivable under these grammars ends

with a sequence of integers This sequence uniquely determines which productions

must be used at every step of the derivation.

Hence, if a terminal string, , has two leftmost derivations, then one of them must

begin with the step.

 and thus continues with derivation under , and the other must begin with the

step and then continues with derivations under .

In both derivations the resulting string must end with a sequence for same

 The reverse of this sequence must be a solution to the PCP, because the string that precede in

one case is and in the other case. Since the string derived in both

cases are identical, the sequence

must be a solution to the PCP.

Hence the proof.

In both derivations the resulting string must end with a sequence for same

 The reverse of this sequence must be a solution to the PCP, because the string that precede in

one case is and in the other case. Since the string derived in both

cases are identical, the sequence

must be a solution to the PCP.

Hence the proof.

CHECK YOUR PROGRESS

True/False type questions

1)Any two CFG's G1 and G2 the question "Is " is

undecidable._____________

2) It is undecidable whether an arbitrary CFG is ambiguous._________________

3) PCP over one-letter alphabet is undecidable.____________________

4) There is no algorithm that determines whether an arbitrary Post Correspondence System

has a solution________________________

5) Some decidable problem in context-free languages_________________

Answers-

1) True

2) True

3) False

4) True

5) False

11.3 POST'S CORRESPONDENCE SYSTEM (PCS)

A post correspondence system consists of a finite set of ordered pairs

 where for some alphabet .Any sequence of numbers is called a

solution to a Post Correspondence System.

The Post's Correspondence Problem is the problem of

determining whether a Post Correspondence system has a solution.

Example 1: Consider the post correspondence system

The list 1,2,1,3 is a solution to it.

Because

I xi yi

1

2

3

 (A post correspondence system is also denoted as an instance of the PCP)

Example 2: The following PCP instance has no solution

I xi yi

1

2

This can be proved as follows. cannot be chosen at the start, since than the LHS and

RHS would differ in the first symbol (in LHS and in RHS). So, we must start

with . The next pair must be so that the 3 rd symbol in the RHS becomes

identical to that of the LHS, which is a . After this step, LHS and RHS are not matching.

If is selected next, then would be mismatched in the 7 th symbol (in LHS and in

RHS). If is selected, instead, there will not be any choice to match the both side in the

next step.

Example 3: The list 1,3,2,3 is a solution to the following PCP instance.

i xi yi

1 1 101

2 10 00

3 011 11

The following properties can easily be proved.

Proposition: The Post Correspondence System

 has solutions if and only if

Corollary: PCP over one-letter alphabet is decidable.

Proposition : Any PCP instance over an alphabet with is equivalent to a PCP

instance over an alphabet with

Proof : Let

Consider We can now encode every as any PCP instance

over will now have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance

over

Theorem 11.2.1: PCP is undecidable. That is, there is no algorithm that determines whether

an arbitrary Post Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the

undecidability of PCP. Since halting problem of TM is undecidable (already proved), This

reduction shows that PCP is also undecidable. The proof is little bit lengthy and left as an

exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free

languages are undecidable. To prove this we reduce the PCP to each of these problem. The

following discussion makes it clear how PCP can be used to serve this purpose.

Let be a Post Correspondence System over the alphabet .

We construct two CFG's Gx and Gy from the ordered pairs x,y respectively as follows.

 and

 where

and

it is clear that the grammar generates the strings that can appear in the LHS of a sequence

while solving the PCP followed by a sequence of numbers. The sequence of number at the

end records the sequence of strings from the PCP instance (in reverse order) that generates

the string. Similarly, generates the strings that can be obtained from the RHS of a

sequence and the corresponding sequence of numbers (in reverse order).

Now, if the Post Correspondence System has a solution, then there must be a sequence

According to the construction of and

In this case

Hence , and implying

Conversely, let

Hence, w must be in the form w1w2 where and w2 in a sequence (since,

only that kind of strings can be generated by each of and).

Now, the string is a solution to the Post Correspondence System.

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s

whose intersection is nonempty. The following result is a direct conclusion of the above.

11.4 CONCLUSION

This module explains about the basic understanding of Post's Correspondence Problem

(PCP). It discusses Post's Correspondence System (PCS) through various theorems,

corollaries and lemmas along with step-wise elaborated solved examples.

11.5 CHECK YOUR PROGRESS

Fill in the blanks

1) A post correspondence system consists of a ______________ set of ordered pairs.

2) PCP over one-letter alphabet is ____________

3) Given any two CFG's G1 and G2 the question "Is "

is_________________

4) It is undecidable whether an arbitrary CFG is _____________

5) The full form of PCP is ______________________

11.6 ANSWER CHECK YOUR PROGRESS

1) Finite

2) Decidable.

3) Undecidable

4) Ambiguous.

5) Post correspondence problem.

11.7 MODEL QUESTION

Qs-1) Explain Post's Correspondence Problem (PCP) in brief?

Qs-2) It is undecidable whether an arbitrary CFG is ambiguous. explain?

Qs-3) PCP over one-letter alphabet is decidable. Explain?

Qs-4) : For any two arbitrary CFG's G1 and G2, what are three conditions that are

undecidable?

Qs-5) Explain the halting problem of turning machine can be reduced to PCP to show the

undecidability.

11.8 REFERENCES

https://nptel.ac.in/courses/106/103/106103070/

11.9 SUGGESTED READINGS

1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

2. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

3. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

https://nptel.ac.in/courses/106/103/106103070/

UNIT-XII CHOMSKY HIERARCHY

12.1 Learning Objectives

12.2 Chomsky Hierarchy

12.3 Equivalence of Unrestricted grammars and TMs

12.4 Context-Sensitive Language and LBAs

12.5 Equivalence of Linear-bounded Automata and Context-sensitive Grammars

12.6 Conclusion

12.7 Check your progress

12.8 Answer Check your progress

12.9 Model Question

12.10 References

12.11 Suggested readings

12.1 LEARNING OBJECTIVES

This chapter gives the basic understanding of Chomsky Hierarchy. It explains Equivalence of

Unrestricted grammars, Turing Machines (TMs), Context-Sensitive Language and Linear-

bounded Automata (LBAs). It also discusses the Equivalence of LBAs and Context-sensitive

Grammars through various theorems, lemmas and step-wise elaborated solved examples.

12.2 CHOMSKY HIERARCHY

The famous linguistic Noam Chomsky attempted to formalize the notion of grammar and

languages in the 1950s. This effort, due to Chomsky, resulted in the definition of the

"Chomsky Hierarchy", a hierarchy of language classes defined by gradually increasing the

restrictions on the form of the productions. Chomsky numbered the four families of

grammars (and languages) that make up the hierarchy and are defined as below.

Let G = (N , , P, S) be a grammar

1. G is called a Type-0 or unrestricted, or semi-there or phrase-structure grammar if all

productions are of the form , where and .

2. G is a Type-1 or context-sensitive grammar if each production

 in P satisfies such that and . Type-1 grammar , by

special dispensation , is allowed to have the production , provided S does not

appear on the right-hand side of any production.

3. G is a Type-2 or context-free grammar if each production in P satisfies

 i.e. is a single nonterminal.

4. G is a Type-3 or right-linear or regular grammar if each production has one of the

following three forms: , A b, A where A, C

N (with A = C allowed) and .

5. The language generated by a Type-i grammar is called a Type-i language, i = 0,1,2,3. A

Type-i language is also called a context-sensitive language (CSL). We have already

observed that a Type-2 language is also called a Context-Free Language (CFL) and a

Type-3 language is also called a regular language. Each class of language in the Chomsky

hierarchy is characterized as the language generated by a type of automata. These

relationships have been summarised in the following table for convenience.

6.

Grammars Languages Automata

Type-0 , phrase-struct , semi-true,

unrestricted grammars

Recursively

enumerable

language

Turing Machine

Type-0 , phrase-struct , semi-true,

unrestricted grammars

Context-sensitive

language

Linear-bounded automata

Type-2, context-free grammars Context-free

language

Pushdown Automata

Type-3, regular, right-linear,

left-linear grammar

Regular Language Finite Automata

We have already shown

• the equivalence of FAs (regular language) and type-3 or regular grammars, and

• the equivalence of PDAs and CFGS.

We now show the equivalence of

• unrestricted grammars and TMs, and

• context-sensitive grammars and LBAs.[Note that we need to introduce the notion of

LBAs first to do this]

12.3 EQUIVALENCE OF UNRESTRICTED GRAMMARS AND

TMs

We want to show that a language L = L(M) for some TM M iff L = L(G) for some

unrestricted grammar G. The following two theorems completes the proof.

Theorem: Let G = (N, , P, S) be an unrestricted grammar. Then the language L(G)

generated by G is recursively enumerable.

Proof : To prove the theorem, we construct a 3-type nondeterministic TM M that

accepts L(G). Tape 1 always holds any given input string w . A production

 of G is represented as where # is a special tape symbol of M such that # .

All the production of G with this representation are written on tape-2 of M. Two productions

are separated by the string ##. The idea is that M's computation simulates derivations of G.

Tape 3 is used to simulate the derivative of G. On many input string w, the computation

of TM = M consists of the following steps:

1. w is written on tape 1.

2. S is written on the first cell of tape 3.

3. A production is chosen from tape 2 (we assume that all the productions

of G are written on tape 2)

4. M searches for an instance of the string on tape 3. If found , then it goes to next

step; otherwise the computation halts and M rejects w.

5. The string on tape 3 is replaced by the string (in the RHS of the

production). [This step minimies one step in the derivation of w in G.]

6. The string of tape 3 is compared with that on tape 1 (i.e. with the input w). If there is a

match , the computation halts in an accepting state (i.e. M accpets w).

7. Repeat step 3 through 7 , to apply other productions.

Note : In step 5, if tape 3 contains and is replaced by , then it says .

Since and may be of different length, the symbols of may have to be shifted to fit

 between and .

Let . Then . This derivation will eventually be discovered by one of the

nondeterministic computations of M by using the steps given above. Hence,

Conversely, let w L(G). Then there is an accepting computation of M for the string w. The

actions of M on tape 3 are precisely the strings derivable from S and the only string accepted

by M are terminal string in L(G). Hence w L(G) giving L(M)=L(G). That is, M accepts

exactly L(G) and hence L(G) is recursively enumerable.

Theorem : Let L be a recursively enumerable language. Then L = L(G) for some unrestricted

grammar G.

Proof : Since L is r.e, it is ampled by a deterministic TM we want

to construct an unrestricted grammar whose derivations simulates the

computations of M, such that . That is, for any string

 iff symbol for some and . For this is to happen we need to represent IDs of

TM M by strings of terminals & nonterminals in G and must have productions in such that

S q0w w.

That is,

1. The initial ID q0w must be derivable from S.

2. Induction production in G to simulate every move of M.

3. If M eventually enters a final state, then transform the string to w.

Since the string w gets modified during simulation (in step 2), the grammar G has to

remember it, so that it can reproduced once M enters a final state. So, G is constructed such

that it generates two copies of a representation of some string w and then simulates the

behaviour of the TM M on one copy, preserving the other. If M accepts, by entering a final

state, then G transforms the second copy to a terminal string; otherwise G doesnot transform

the second copy to a terminal string.

Let = , for some k >=1

Construction of G is given below.

• N =

• The production in P are

1. S q0T

2. T [ai , ai]T for all i =1, 2 , ... , k

3. T R

4. R [, B] R

5. R

• For every move (q, X) = (P, Y, R) of the TM M,

q[a, X] [a, Y] p for all a { } and all q Q and X , Y .

• For every move (q, X) = (P, Y, L) of the TM M,

[b, Z] q [a, X] p[b, Z] q [a, Y] for all a, b { }, all X , Y , Z and q

 Q

• For all q F, all a { } and X

1. [a, X] q qaq

2. q [a, X] qaq.

3. q

We now see that a representation of the initial ID of M for a string

can be derived from S using the two rules 1 and 2 i.e.

Assume that M accpets w and it doesnot use more than i calls (i>=0) to the right of w. Then

using rule 3 once and rule 4 i-times, and finally rule 5 once, G derives the following string

 (Using rule 3)

 (Using rule 4 i-times)

 (using rule 5)

This is the representation of the string

For any further derivation from this point, we can use only rules 6 and 7 until we encounter a

final state.

Let be the representative of the string in G. Consider the ID in G. Consider the

ID of M for .

If (q, aj)=(P, X, R) is a move of M, then using rule b, we find that

which is a correct representation of the next ID and it remembers the symbol in

the first component of the nonterminal and modifies it to X in the second component.

If on the other hand, is move of M, then similarly, it is easy to see that

using rule 7 we find a correct representation of the next ID of M.

Hence, at every step, using rule 6 and 7, the grammar G correctly simulates the computations

of M.

If , then M eventually enters a final state. At this point, the derivation in G can use

rule 8 to reproduce the original string w from the first component of the representation of

every nonterminal in the resulting string. All the q's can be erased by using q , as many

times as required. Therefore S w and so w L(G).

Conversely, if w L(G) there is a derivation of w in G. Proceeding in exactly in opposite

direction as discussed above, we discover that for some , and

. Hence , completing the proof.

12.4 CONTEXT-SENSITIVE LANGUAGE AND LBAs

We first introduce the notion of LBAs and then show the equivalence of CSLs and LBAs.

• TM is the most general and powerful computational model developed so far.

• It is interesting to observe that though a large number of variations of TMs exists, all are

equivalent to the basic TM model in terms of power or capability i.e. all can accept r.e

language only. This implies that it is not possible to increase the power of a TM by

putting more features in terms of complex and /or additional structures to the basic model.

• But by putting some kind of restrictions on the use of the structures of the TM, it is

possible to limit the power. For example,

o If only a finite amount of tape is allowed to use with read-only tape that can move

only to right one call at a time, we get a FA accepting regular language.

o If the tape is restricted to be used as stack, it will work like a nondeterministic

pushdown automata.

• Similarly, we get another interesting type of automata by restricting the number of tape

cells that can be used.

• This new automata, denoted "linear bounded automata" (or LBA), accepts a smaller class

of languages than the class of r.e. languages. An LBA is exactly similar to a TM except

that on any input w with |w| = n, it can use only (n+2) numbers of cells of the input

tape.The input string is always put between a left-end marker, <, and a right-end marker,

>, which are not puts of the input string. The read-write head cannot move to the left of

the left-end marker or to the right of the right-end marker. The two end markers cannot be

overwritten in any case.

Formally, a LBA is a nondeterministic TM M = (Q, , , , q0, B, <, >, F) satisfying the

following conditions:

1. The input alphabet, must contain two special symbols < and >, the left and right

end markers, respectively which do not appear in any input string.

2. (q, <) can contain only element of the form (p, <, R) and (q, >) can contain only

elements of the form (p, >, L) for any q, p Q .

[Note: All other elements are identical to the corresponding elements of a TM]

The language accepted by M, denoted by L(M) is

L(M) = { and } for some and }

The blank symbol, B is not necessary to be considered as a part of M since it cannot move to

the right of right - end marker.

The reason behind using the name "linear bounded automation" is derived from the following

fact:

If on every input w with |w| = n, a TM is allowed to use only an amount of tape that

is "bounded by some linear function" of n, then the computational power of this TM would

be identical to the TM which is restricted to use the amount of tape containing n+2 cells (as

given in the definition).

Example : The language is accepted by some LBA.

To show that L is accepted by an LBA. we need to construct a TM to accept L such that

during computation on any input w, the read-write head moves neither beyond the right of the

rightmost symbol of w nor beyond the left of the leftmost symbol of w. The outline of the

TM M accepting L is given below.

On initial state q0, M replaces the first a by X and change state to q1 and the head moves to

the right looking for the first b, skipping all other symbols.

This b is then replaced by Y and changes state to q2 and the head moves to the right

searching for the first c skipping all other symbols. This c is then replaced by Z and changes

state to q3 and the head moves to the left searching for the first X, skipping all other symbols.

On reading X in state q3 the head moves to the right (one cell) changing state to q0 again to

repeat the same process i.e match each a, b and c and replace them by X, Y and Z,

respectively, with the same sequence of state changes.

During this process, if it reads Y (instead of the symbol a) in state q0, then it implies that

all a's have been replaced by X's and hence it needs to check that all b's and c's have also been

replaced by Y's and Z's, respectively.

This can be done by entering a state, say q4 and moving the head to right looking for any b's

or c's left until the right end is discovered (by reading a blank symbol). If not found, the input

is accepted; otherwise it is rejected.

It is observed that at no point the read-write head moves past the extreme left and right

symbols, except in the last step when it reads the first blank symbol to the right of w.

This TM can be converted to a LBA by including the two end marks and keeping all the

moves except the last one. In the last step when M reads a blank symbol, the LBA will read

the right endmarker, > and hence a move of the form can be included,

where , to save the same purpose. This LBA also accepts the same language L as that

of M.

CHECK YOUR PROGRESS

True/False type questions

1) Letters, digits, single characters are known as strings______________

2) LBA is accepted by Regular language________________

3) Type 3 is regular language______________

4) Smallest unit of a grammar that appears in production rules, cannot be further broken

down is known as terminal._______________

5) Turing machine is most powerful language.____________________

Answers-

1) True

2) False

3) True

4) True

5) True

12.5 EQUIVALENCE OF LINEAR-BOUNDED AUTOMATA

AND CONTEXT-SENSITIVE GRAMMARS

we now show that LBA's and CSG's are equivalent in the sense that the LBA's accept exactly

the CSLs except for the fact that an LBA can accept while a CSG cannot generate , that

is, L = L (M) for some CSG G. The result is shown by proving the following two theorems.

Theorem : If L is a context-sensitive language, then L is accpeted by one LBA M.

Proof : Since L is a CSL, L = L(G) for some CSG G =(N, , P, S). We now construct an

LBA M with a two-track tape to simulate the derivatives of G. The first track holds the input

string (including the end markers) while the second track holds the sentential form generated

by the simulated derivation. On input <w> on its tape a computation of the LBA M consists

of the following sequence of steps.

1. The LBA writes the (start) symbol S of G on the second track below the leftmost

symbol of w.

2. If w = the LBA halts without accepting.

3. The LBA nondeterministically selects a production and a position in the

sentential form written on the second track.

4. It follows next three steps

1. if a substring on track 2 starting at the selected position doesnot match , the

LBA halts in a rejecting state.

2. If the substring on track 2 starting at the selected position is but the string

obtained by replacing by (i.e. applying the rule) has a length

greater than |w| , then the LBA halts in rejecting state.

3. otherwise, is replaced by on track 2.

5. If track 2 contains the string w, then the LBA halts in an accepting state, otherwise,

steps 3 through 5 are repeated.

Thus, the LBA M will accpet a string w if . Conversely, a computation of the

LBA M with input <w> that falls in an accepting state consists of a sequence of string

transformations generated by steps 3 and 4. But these transformations define a deviation

of w in G. Thus, the LBA M accepts w iff .

Theorem : Let L be a language accepeted by an LBA M = . Then L-{

} is a context-sensitive language.

Proof : We need to construct an equivalent CSG G that simulates the computation of the

LBA M. Note that the techniques used to construct an equivalent unrestricted grammar that

simulates the computations of a TM (as given in theorem) cannot be adopted directly. The

reason is that if the CGS simulated the LBA using distinct symbols for the states and the

endmarkers, then it could never erase these symbols later to produce the original input string

since it would violate the noncontracting or monotonicity property of a CSG. Because use of

a production in a derivation to erase a symbol in a sentential form would produce a starter

sentential form. Hence the endmarkers must be incorporated into adjustment tape symbols

and similarly the states must be incorporated into the symbols scanned by the tape head. The

input alphabet of G is obtained from by removing the endmarkers. Nonterminals of G are

ordered pairs-the first component is a terminal symbol and the second component is a string

consisting of a combination of a tape symbol and (possibly) a state and endmarkers. The

construction of the CSG G = is as follows.

N = { S, A, [a, X], [a,<X], [a, X>], [a, <X>], [a, qX], [a, q<X], [a, <qX], [a, qX>], [a, Xq >],

[a, Xq>], [a, qX>], [a, Xq>], [a, q<X>], [a, <qx>],[a, <Xq>] }

for all and

The production in P are given below.

1.

2.

Using these two rules we get

S [a, q0<a>] or

The string that is obtained by concatenating the elements of the first component(s) of the

ordered pairs (composite variable(s)) is and represents the input string to the

LBA M. Concatenating the second component we get the string which is the

initial configuration of the LBA M on the input string .

Rules 3 and 4 given below are used to simulate the computations of the LBA M.

3. For every move of the LBA include

 in P

 and

4. Similarly for every move of the LBA include

 in P.

5. whenever

 is a move of the LBA.

6. whenever

 is a move of the LBA

The two rules 5 and 6 are used to handle the two special extreme cases as indicate in

the definition of the lba.

Hence every move of the LBA can be simulated by G using the above rules. It is clear

that if the LBA ever enters a final state qf , then simulating this step the CSG G will

produce a variable in the sentential form. At this point, the derivation must

generate the original input string.

Using the production

7. a, and , (i.e. and/or could include <, > and onre

tape symbol).

The ordered pair is transformed into the terminal symbol contained in the

first component.

Now the following rules allow deletion of the second component of an ordered pair

(i.e. composite variable) if it is adjacent to a terminal symbol.

8.

9. and all possible

Once, all the second component s are deleted using the above two rules, the original input

string is correctly generated. This is the correct derivation the LBA would accept the same

string as it had entered one of the final states (implied by use of rule 7).

It is also clear that the CSG G can generate a terminal string only if the LBA accepts it.

Note that the production used here are all context-sensitive. Also, the second components

donot produce the string . Thus the computation with the empty string as input is not

simulated by the CSG.

A proof that any string is accepted by the LBA M iff it is generated by the

grammar G is exactly similar to one that was produced in Theorems.

• What are the different levels in the Chomsky hierarchy?

Chomsky Hierarchy Levels. Source: Fitch. 2014.

There are 4 levels – Type-3, Type-2, Type-1, Type-0. With every level, the grammar

becomes less restrictive in rules, but more complicated to automate. Every level is also a

subset of the subsequent level.

o Type-3: Regular Grammar - most restrictive of the set, they generate regular languages.

They must have a single non-terminal on the left-hand-side and a right-hand-side

consisting of a single terminal or single terminal followed by a single non-terminal.

o Type-2: Context-Free Grammar - generate context-free languages, a category of

immense interest to NLP practitioners. Here all rules take the form A → β, where A is a

single non-terminal symbol and β is a string of symbols.

o Type-1: Context-Sensitive Grammar - the highest programmable level, they generate

context-sensitive languages. They have rules of the form α A β → α γ β with A as a non-

terminal and α, β, γ as strings of terminals and non-terminals. Strings α, β may be empty,

but γ must be nonempty.

o Type-0: Recursively enumerable grammar - are too generic and unrestricted to describe

the syntax of either programming or natural languages.

 Any language is a structured medium of communication whether it is a spoken or written

natural language, sign or coded language, or a formal programming language. Languages are

characterised by two basic elements – syntax (grammatical rules) and semantics (meaning).

In some languages, the meaning might vary depending upon a third factor called context of

usage.

Depending on restrictions and complexity present in the grammar, languages find a place in

the hierarchy of formal languages. Noam Chomsky, celebrated American linguist cum

cognitive scientist, defined this hierarchy in 1956 and hence it's called Chomsky Hierarchy.

Although his concept is quite old, there's renewed interest because of its relevance to Natural

Language Processing. Chomsky hierarchy helps us answer questions like “Can a natural

language like English be described (‘parsed’, ‘compiled’) with the same methods as used for

formal/artificial (programming) languages in computer science?”

• What are the common terms and definitions used while studying Chomsky Hierarchy?

o Symbol - Letters, digits, single characters. Example - A,b,3

o String - Finite sequence of symbols. Example - Abcd, x12

o Production Rules - Set of rules for every grammar describing how to form strings from

the language that are syntactically valid.

o Terminal - Smallest unit of a grammar that appears in production rules, cannot be further

broken down.

o Non-terminal - Symbols that can be replaced by other non-terminals or terminals by

successive application of production rules.

o Grammar - Rules for forming well-structured sentences and the words that make up those

sentences in a language. A 4-tuple G = (V , T , P , S) such that V = Finite non-empty set

of non-terminal symbols, T = Finite set of terminal symbols, P = Finite non-empty set of

production rules, S = Start symbol

o Language - Set of strings conforming to a grammar. Programming languages have finite

strings; most natural languages are seemingly infinite. Example – Spanish, Python,

Hexadecimal code.

o Automaton - Programmable version of a grammar governed by pre-defined production

rules. It has clearly set computing requirements of memory and processing. Example –

Regular automaton for regex.

• What are the important extensions to Chomsky hierarchy that find relevance in NLP?

Mildly Context Sensitive Languages. Source: Jäger and Rogers. 2012.

There are two extensions to the traditional Chomsky hierarchy that have proved useful in

linguistics and cognitive science:

• Mildly context-sensitive languages - CFGs are not adequate (weakly or strongly) to

characterize some aspects of language structure. To derive extra power beyond CFG, a

grammatical formalism called Tree Adjoining Grammars (TAG) was proposed as an

approximate characterization of Mildly Context-Sensitive Grammars. It is a tree generating

system that factors recursion and the domain of dependencies in a novel way leading to

'localization' of dependencies, their long distance behaviour following from the operation of

composition, called 'adjoining'. Another classification called Minimalist Grammars (MG)

describes an even larger class of formal languages.

• Sub-regular languages - A sub-regular language is a set of strings that can be

described without employing the full power of finite state automata. Many aspects of human

language are manifestly sub-regular, such as some ‘strictly local’ dependencies. Example –

identifying recurring sub-string patterns within words is one such common application.

12.6 CONCLUSION

This module explains about the basic understanding of Chomsky Hierarchy. It explains

Equivalence of Unrestricted grammars, Turing Machines (TMs), Context-Sensitive

Language and Linear-bounded Automata (LBAs). It also discusses the Equivalence of LBAs

and Context-sensitive Grammars through various theorems, lemmas and step-wise elaborated

solved examples.

12.7 CHECK YOUR PROGRESS

1) Type 3 is ____________________grammer.

2) Linear bound automata is accepted by___________________

3) Smallest unit of a grammar that appears in production rules,is known as_______________

4) Set of rules for every grammar describing how to form strings from the language that are

syntactically valid is known as _________________

5) Recursive enumerable grammer is accepted by__________________

12.8 ANSWER CHECK YOUR PROGRESS

Fill in the blanks:

1) Regular

2) Context sensitive language

3) Terminal

4) Production rules

5) Turing machine

12.9 MODEL QUESTION

Qs-1) What is grammer explain? What are its benefits? Expalin.

Qs-2) Explain Chomsky Hierarchy with the help of diagram?

Qs-3) What is sub-regular language?

Qs-4) Explain type1 Grammer?

Qs-5) What is midly context sensitive language? Explain.

12.10 REFERENCES

1. Devopedia. 2021. "Chomsky Hierarchy." Version 9, June 28. Accessed 2021-06-28.

https://devopedia.org/chomsky-hierarchy.

2. https://nptel.ac.in/courses/106/103/106103070/

12.11 SUGGESTED READINGS

3. Hopcroft, John and Jeffery Ullman. 1987. "Introduction to Automata theory, languages

and computation." Indian Student Edition:Narosa Publishing House.

4. Jäger, Gerhard and James Rogers. 2012. "Formal language theory: refining the Chomsky

hierarchy." Philos Trans R Soc Lond B Biol Sci., vol. 367, no. 1598, pp. 1956–1970, July

19. Accessed 2019-08-2019.

https://devopedia.org/chomsky-hierarchy
https://nptel.ac.in/courses/106/103/106103070/
https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0077
https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0077
https://royalsocietypublishing.org/doi/10.1098/rstb.2012.0077

5. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH

6. Papadimitrou, C. and Lewis, C.L., “Elements of theory of Computations”, PHI

7. Cohen D. I. A., “Introduction to Computer theory”, John Wiley & Sons

8. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM

9. Roberts, Eric. 2004. "Basics of Automata Theory." Automata Theory, Stanford University,

September. Accessed 2019-10-16.

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

